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How This Book Is Organized 

 
Chapter 1 provides a brief overview of the mixed scattering matrix (P-matrix) theory. Its 

properties and applications to SAW transducer and SAW filter analysis based on the three-port 
representation of SAW transducers are discussed. The number of the independent P-matrix elements is 
determined and their physical meaning is explained. As a particular case, the mixed scattering matrix of 
a SAW transducer is deduced in the quasi-static approximation, with its properties discussed. The 
relationship between the mixed scattering and transmission matrices of a SAW transducer is deduced. 
An important particular case of the scattering and transmission matrices in the quasi-static 
approximation completes consideration. 

Chapter 2 discusses the properties and calculation of the acoustoelectric (electroacoustic) 
conversion function of unapodized and apodized periodic SAW transducers in the quasi-static 
approximation. The basic equations for the acoustoelectric conversion function are deduced in terms of 



 v
 
finger potentials and gap voltages. The results are generalized to the case of the apodized SAW 
transducers. 
  Chapter 3 provides the theory of admittance calculation for periodic SAW transducers based on the 
concept of a nodal admittance matrix in the quasi-static approximation. Closed-form formulae for 
admittance calculation comprising acoustic conductance and susceptance are deduced for unapodized 
and apodized SAW transducers. The physical meaning of the deduced closed-form equations is 
explained. It is shown that equations are simplified in terms of the gap (finger overlap) taps rather than 
finger length taps.  

Chapter 4 continues with a discussion of SAW transducer admittance calculation where the 
problem of the static capacitance calculation for transducers with arbitrary finger polarities is 
considered. The closed-form equations in terms of the interelectrode capacitors are deduced which are 
applicable to both unapodized and apodized SAW transducers. The electrostatic end effects are 
supposed to be negligible due to the special guard fingers at the both ends of a finite length SAW 
transducer. 

Chapter 5 discusses properties and models of SAW multistrip couplers (MSC), with the basic 
assumption of two rectangular orthogonal modes with symmetric and antisymmetric amplitude 
distribution propagating in the MSC (two-mode approach). The solutions for these modes are obtained 
using several known techniques, particularly:  

1) quasi-static approximation (neglecting SAW reflections near the synchronous frequency);  
2) reflective array model (RAM) based on the closed-form cascading of the elemental reflective 

cells; 
3) coupling-of-modes (COM) analysis;  
4) field approach based on the closed-form equations for the fundamental and first backward 

space harmonics.  
The MSC analysis is completed by calculation of the MSC scattering matrix in terms of the modal 
scattering parameters. 

In Chapter 6, SAW filter modeling is discussed for in-line and dual-track SAW filters based on 
the closed-form cascading (in the quasi-static approximation) or direct cascading of the constituent 
scattering matrices. Given the scattering matrices of the SAW filter components (SAW transducers and 
multistrip coupler if necessary), the overall Y-matrix of the SAW filter is found. The two-port Y-matrix 
is converted to the scattering matrix (S-matrix) using the relationship of the acoustic and electric 
variables at the input and output ports of a SAW filter. 

 



 
 

1-1

1. MIXED SCATTERING MATRIX AND ITS PROPERTIES 

1.1. Three-Port Representation of a SAW Transducer 
 
In many practical cases, a SAW transducer can be considered as a reciprocal lossless three-port net-

work with two acoustic ports 1, 2 and one electric port 3 (Fig. 1.1) where the acoustic variables ai, bi, i=1,2 
denote amplitudes of the incident (incoming) and reflected (outcoming) waves at the acoustic ports and the 
electric variables I, V are the transducer terminal current and the voltage applied to the transducer bus-bars, 
respectively. 

1, 2 – acoustic ports, 3 – electric  port

a1

b1

a2

b2

1 2

3

V

I

 
 

Fig. 1.1. Three-port representation of a SAW transducer 
 

It is convenient to characterize a SAW transducer as a three-port device by its mixed scattering matrix (P-
matrix) [1, 2] which is the most closely related with SAW transducer physics. This matrix is a combination 
of the dimensionless wave scattering coefficients with the mixed units terms to account for acoustoelectric 
interaction. The matrix relates two reflected wave amplitudes bi, i=1, 2 and the terminal current I with the 
incident wave amplitudes ai and the applied voltage V as follows 

 
 

(1.1) 
 
 

 
or in the block-matrix form 
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where A=[a1  a2]T is vector of the incident waves and B=[b1  b2]T  is vector of the reflected waves at the 
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circuit SAW transducer (passive grating, V=0). The acoustoelectric matrix-block Mae=[ m13 m23]T charac-
terizes SAW excitation (acoustoelectric conversion) by a SAW transducer with the voltage V applied to the 
transducer bus-bars. The electroacoustic matrix-block Mea=[ m31 m32] gives a contribution to the terminal 
current I induced by the incident acoustic waves. Finally, the electric term Mee=[m33] corresponds to the 
transducer admittance Y=m33.  

By definition, the matrix elements mii=bi /ai and mik= bi /ak, i,k=1,2 are the reflection and transmis-
sion coefficients of a short-circuit transducer (V=0). The elements mi3 = bi /V, i=1,2 are the acoustoelectric 
conversion functions (in SAW excitation mode) in the left and right directions, respectively. By analogy, 
the terms m3i = I/ai, i=1,2 are the electroacoustic conversion functions (in SAW detection mode) from the 
left and right directions. The element m33=Y =I/V is the transducer admittance seen at the electric port when 
there are no incident waves at the acoustic ports (A=0). 

At each port (either acoustic or electric) we can define the following relationship between the electri-
cal variables and generalized wave amplitudes [3] 

 
 

(1.3) 
 

and the inverse relation 
 

 
(1.4) 

 
 

where ak, bk are the amplitudes of the incident and reflected waves, Ik, Vk are the current and voltage, and 
Zk,=1/Yk is the characteristic impedance at the k-th port. According to Eq. (1.3) the average power delivered 
to the k-th port is 

   
(1.5) 

 
as the quantity (ak

* bk - ak
 bk

*) is purely imaginary. By other words, the average power delivered through the 
k-th port is equal to the power of the incident wave minus the power of the reflected wave. It is worthy to 
note that this definition of the mixed scattering matrix is more physical and convenient for practical use if 
compared to those given in [1, 2]. 

Following our definition of the mixed scattering matrix, the acoustic matrix elements mik, i,k=1,2 are 
dimensionless, the acoustoelectric conversion elements (mixed units) mi3, m3i, i=1,2 have the 
units Ω= // 1VA , and the electric port admittance m33 has the units Ω-1. 

1.2. Mixed Scattering Matrix Properties 
 

The basic properties of the mixed scattering matrix M can be deduced from the known properties [3] 
of the wave scattering matrix S. By substitution of Eq. (1.3) applied to the electric port 3 into Eq. (1.1) we 
obtain the dimensionless wave scattering matrix S=[sik], i,k=1,2,3 which relates the amplitudes of the re-
flected and incident waves at all three ports  
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where A=[a1 a2 a3]T
 is vector of the incident waves, B=[b1 b2 b3]T is vector of the reflected waves. With 

help of Eqs. (1.1)-(1.4), the matrix blocks of the wave scattering matrix S can be expressed in terms of the 
appropriate matrix blocks of the mixed scattering matrix M as follows 
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or in the scalar form  
 

 

0 1313 31 13 32
11 12

0 0 0

0 2323 31 23 32
21 22

0 0 0

0 31 0 32 0 33

0 0 0

2

2

Y mm m m m
m m

Y Y Y Y Y Y

Y mm m m m
m m

Y Y Y Y Y Y

Y m Y m Y m
Y Y Y Y Y Y

⎡ ⎤
− −⎢ ⎥

+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥−

− −⎢ ⎥+ + +⎢ ⎥⎣ ⎦

S      (1.8) 

 
where Y0 =1/Z0 is the characteristic admittance at the electric port and Y=m33 is the transducer admittance. 

For a reciprocal and lossless network, the wave scattering matrix is symmetric S=ST and unitary 
SS*=E [3] where * denotes Hermitian conjugation of a matrix and E is the identity matrix. The reciprocity 
(symmetry) property of the wave scattering matrix S leads to the following reciprocity relations for the 
mixed scattering matrix blocks 

  
(acoustic part)    (1.9) 

 
(acoustoelectric part)   (1.10) 

 
The unitary (power conservation) property of the wave scattering matrix S for a lossless SAW transducer 
imposes additional restrictions on its elements and hence the elements of the mixed scattering matrix M. In 
the block-matrix form this property can be written as 
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E  is the identity matrix of 2 by 2 size and 0=[0  0]T. The block-matrix equation (1.11) is 

reduced to the following system of equations 
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Substitution of the matrix-blocks from Eq. (1.7) into Eq. (1.14) results in the following expression for the 
electric port radiation conductance in terms of the electrical and mixed units terms 

 
(1.15) 

 
We can see from Eq. (1.15) that according to the energy conservation law the electrical input (delivered) 
power is equal to the total acoustic output power in a lossless three-port. The contribution of SAW radia-
tion to the imaginary (reactive) part B(ω) of the admittance Y(ω)=G(ω)+jB(ω) is related to the real part 
G(ω) by the Hilbert transformation due to the causality principle for the electrical current and voltage [4, 5] 
and can be calculated as 
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π ω ω
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By substituting Eq. (1.7) into Eq. (1.13) and using Eq. (1.15) we derive the following equation inter-

relating the acoustic (dimensionless) and the mixed units terms 
 

 *1
2ae aa ea=M M M  (1.17) 

 
Finally, substitution of Eq. (1.7) into Eq. (1.12) and use of Eqs. (1.15), (1.17) give after some ma-

nipulations an equation for the acoustic part of the mixed scattering matrix 
 
 *

aa aa =M M E  (1.18) 
 

It is worthy to note that Eq. (1.18) follows directly from the consideration of a short-circuit transducer 
(passive grating) as a lossless two-port.  

For convenience, we summarize the results by rewriting Eqs. (1.9), (1.10) and (1.15), (1.17) in the 
following scalar form. 

 
Reciprocity: 

m12= m21          (1.19) 
m31=-2 m13         (1.20)  
 m32=-2 m23         (1.21) 

 
Power conservation (lossless three-port): 
 

|m11|2 +|m12|2=1        (1.22) 
|m22|2 +|m21|2=1        (1.23) 
m11 m12
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Re{m33}=|m13|2 +|m23|2       (1.25) 
 
Acoustoelectric conversion: 
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As for a reciprocal three-port m12=m21, it follows from Eqs. (1.22), (1.23) that 
2

122211 ||1|||| mmm −== . 
Without the loss of generality, we can also presume that m11=m22 that can be adjusted by a proper lo-

cation of the phase reference plane. Supposed for the reflection coefficient m11 to be known, the transmis-
sion coefficient θemm j

12|| 1212 =  can be determined with the magnitude 2
1112 ||1|| mm −=  and phase θ12= 

θ11±π/2 that follows from Eq. (1.24) where θ11 is phase of the reflection coefficient m11. Therefore, the re-
flection and transmission coefficients m11 и m12 are in phase-quadrature.  

Thus, in general case the mixed scattering matrix M contains three principal elements m11, m13, and 
m33. The transmission coefficient m12 can be deduced from the reflection coefficient m11 as was discussed. 
Given the acoustoelectric conversion function m13 in the left direction and the scattering coefficients m11 
and m12, the acoustoelectric conversion function m23 in the right direction can be determined by using Eq. 
(1.27), with the electroacoustic conversion functions m31 and m32 found by reciprocity, Eqs. (1.20), (1.21). 
The electric port admittance m33 =Y(ω)=G(ω)+jB(ω) should be deduced from physical considerations or 

calculated numerically by applying Eq. (1.25) to determine the real part (radiation conductance) G(ω), with 

the imaginary (reactive) part B(ω) given by Hilbert transformation of the radiation conductance G(ω). 

1.3. Mixed Transmission Matrix of a SAW Transducer 
 
The mixed scattering matrix M=[mik] of a SAW transducer describes relationship of the reflected 

waves b1, b2 and the terminal current I with the incident waves a1, a2 and the transducer bus-bar voltage V 
as follows 
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Eq. (1.28) may be treated as a system of linear equations with respect to any set of three independent vari-
ables, either acoustic or electric ones. 

In many applications, the mixed transmission matrix T=[tik], i,k=1,2,3 can be useful that describes re-
lationship of the acoustic waves a1, b1 at the left acoustic port and the terminal current I with the waves a2, 
b2 at the right acoustic port and the transducer bus-bar voltage V, i.e. 
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or in matrix form 
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The mixed transmission matrix T given by Eq. (1.30) is convenient for cascading SAW elements. 
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The elements tik of the mixed transmission matrix T can be found from the solution of the system 
(1.28) with respect to the unknown variables a1, b1 and I in terms of the variables a2, b2 and V supposed to 
be known a priori. After some manipulations, we obtain 
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On the other hand, from the solution of Eq. (1.29) with respect to the unknown variables b1, b2 and I we can 
express the elements mik of the mixed scattering matrix M in terms of the elements tik of the mixed trans-
mission matrix T  
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By using Eqs. (1.31) and (1.32) we can convert the mixed scattering matrix M to the mixed transmission 
matrix T and vice versa. 

1.4. Scattering and Transmission Matrices in the Quasi-Static Approximation 
 
If the central frequency of a SAW transducer is far away from the synchronous frequency it may be 

presumed to a good accuracy that a short-circuit SAW transducer is reflectionless (m11= m22=0). This is a 
basic assumption of the quasi-static approximation [4, 5] that simplifies considerably analysis of SAW 
transducers.  

In this case, the mixed scattering matrix of the uniform SAW transducer takes the simple form 
 
 

(1.33) 
 
 
 

where Φ=Nϕ is transducer phase delay, ϕ=βp is the phase lag per period p, β=ω/v is SAW wave number, v 
is effective SAW velocity under the transducer, m is acoustoelectric conversion function, Y is the trans-
ducer admittance to satisfy the condition Re{Y}=2|m|2. Therefore, in the quasi-static approximation the 
mixed scattering matrix of a SAW transducer is characterized by three independent parameters: 

1) effective SAW velocity v; 
2) acoustoelectric conversion (transfer) function m;  
3) transducer admittance Y=G+jB+jωC where C is the transducer static capacitance. 
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Taking into account Eqs. (1.31) and (1.33) the mixed transmission matrix T in the quasi-static ap-
proximation (m11= m22=0, m12= m21=e-jΦ) takes the form 

 

 

*
23

13
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0 0
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T  (1.34) 

 
Eqs. (1.33) and (1.34) take the simplest form when the phase reference plane is chosen so that Φ=0, 

i.e. the phase is referenced to the transducer center. In this case, we obtain 
 

 *

*

0 1
1 0
2 2

m
m

m m Y

⎡ ⎤
⎢ ⎥= −⎢ ⎥
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M  (1.35) 

and 
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m
m

m m Y

⎡ ⎤
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T . (1.36) 

 
Therefore, only two independent matrix elements m and Y should be determined in the quasi-static 

approximation. In the next chapters we consider the calculation of the acoustoelectric conversion function 
m and the transducer admittance Y that includes the radiation conductance and susceptance as well as the 
static capacitance.  
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2. ACOUSTOELECTRIC CONVERSION FUNCTION 

2.1. Definition of the Acoustoelectric Conversion Function 
 

By definition, the acoustoelectric conversion (transfer) function is given by the following 
expression m=a1/V where a1 is the generalized SAW amplitude of the wave traveling in the left 
direction, V is the voltage applied across the transducer. To deduce a closed-form equation for the 
acoustoelectric conversion function, we express a generalized SAW amplitude a in terms of the surface 
wave potential φ. In the quasi-static approximation, SAW power flow carried by the uniform acoustic 
beam of the width W (acoustic aperture) is given by [5, Eq. (3.34)] 

 

 * * *
0

1 1 1
2 2 4

WP aa Y ωφφ φφ= = =
Γ

     (2.1) 

 
where the potential φ accompanies the traveling surface wave of the amplitude a, Γ=K2/2ε is the 
substrate material constant, K2 is the piezoelectric coupling factor, ε=ε0+εp is the surface effective 
permittivity, ε0 is the permittivity of the medium above the substrate surface, and εp is the permittivity 
of the substrate material. Therefore, a generalized SAW amplitude a is related with a SAW potential φ 
as 

 
(2.2) 

 
where Y0=ωW/2Γ is the acoustic characteristic admittance of the substrate material. 

The potential φ of the surface acoustic wave launched by a periodic SAW transducer in the left 
direction is known to be [5, Eq. (4.87)] 

 
(2.3) 

 
where β=ω/v is the SAW wave number, ξ(β) is the element factor and F(β) is the array factor, L=Np is 
the transducer length, with N being the number of electrodes (fingers) and p being the finger pitch 
(period) (Fig. 2.1). 
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Fig. 2.1. Finite length periodic SAW transducer 
 

The element factor is defined as [5-7] 
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where ν=ϕ/2π-n is the baseband normalized frequency variable, ϕ=βp is the phase lag per period p, β 
is the SAW wavenumber, n=[ϕ/2π] is the space harmonic number (n ≤ ϕ/2π ≤ n+1), P-ν(-cosΔ) is the 
Legendre function, Pn(-cosΔ) is the Legendre polynomial, Δ=πη, η=a/p is the metallization ratio (duty 
factor), a is the finger width. 

The array factor F(ϕ) is given by the Fourier transform of the set of electrode potentials Vk, 
k=0,N-1 [5]: 

1 1( )
2

0

1( )
N Nj k

k
k

F V e
V

ϕϕ
− −− −

=
= ∑       (2.5) 

 
where phase is referenced to the transducer center. Taking into account Eqs. (2.2)-(2.4) we obtain the 
following explicit formula for the acoustoelectric conversion function 
 
 

(2.6) 
where Φ=βL=Nβp. 

Eq. (2.6) has been deduced in terms of finger taps which are specified by a set of the prescribed 
potentials Vk on the transducer electrodes. The correct modeling of periodic SAW transducers presumes 
introducing two semi-infinite additional sets of the equipotential guard electrodes to suppress the 
electrostatic end effects in the finite length transducer [5, 8]. These guard electrodes have the potentials 
Vk=V0, k<0 and Vk=VN-1, k>N-1 at the left and right sides of the basic structure with the potentials Vk, 
k=0,N-1 (Fig. 2.2). 

 
Fig. 2.2. Periodic SAW transducer with guard electrodes 

 
In particular case of the grounded guard fingers (V0=VN-1=0), the summation involves only the basic 
structure with the finite number of fingers N. However, in general case V0≠VN-1≠0 the summation in Eq. 
(2.5) has to be extended to include contribution of the guard fingers. Without loss of generality, we 
place for the moment the phase reference in the center of the first finger of the basic structure. Then by 
using the identities 

the sum in Eq. (2.5) can be modified as 
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After simple transformations, we obtain 
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where the last term accounts for the contribution of the guard electrodes. We can see that only in the 
particular case V0=VN-1=0 Eq. (2.8) reduces to Eq. (2.5). It is worthy to note that according to Eq. (2.8) 
applying a uniform potential across all the fingers including guard ones doesn’t affect the transducer 
response that is anticipated from the physical considerations. 

After some manipulations, the sum (2.7) can be transformed to another form 
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where ΔVk= Vk+1- Vk is the voltage in the k-th gap between the adjacent fingers having the potentials 
Vk+1 and Vk, respectively. The factor e-j(k+1/2)ϕ accounts for the gap position offset with respect to the 
finger center. As the last gap voltage in Eq. (2.9) ΔVN-1= VN- VN-1=0, the summation corresponds to the 
number of the actual gaps M=N-1 in the basic structure.  

Eq. (2.9) shows that the array factor can be alternatively expressed in terms of the Fourier 
transform of the gap voltages ΔVk. This form is more convenient for practical use as it gives zero 
contribution of the guard fingers to the overall response regardless a set of potentials Vk. Since we use 
the voltages ΔVk instead of the potentials Vk, this excludes automatically any uniform potential applied 
across the transducer. 

Referenced to the transducer center, Eq. (2.9) gives the following equation for the array factor 
 
 

(2.10) 
 

where M=N-1 is the number of gaps in the basic structure. After substitution of Eq. (2.10) into Eq. 
(2.6), we obtain the expression for the acoustoelectric conversion function in terms of the gap voltages 
 

(2.11) 
 
where the gap element factor ζ(ϕ) is related to the finger element factor ξ(ϕ) as 
 

(2.12) 
 
and the gap array factor 
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According to Eq. (2.12) the gap element factor has the simpler form and weaker frequency dependence 
if compared to the finger element factor that is an additional advantage of using gap voltages instead of 
the finger potentials. 
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2.2. Acoustoelectric Conversion Function for Apodized SAW Transducer 
 

For an apodized periodic SAW transducer, the acoustic field variables in equations vary with the 
coordinate y across the acoustic aperture W, as well as with x in the propagation direction. We confine 
our consideration to cases where the propagating wavefront is intercepted by a uniform receiving SAW 
transducer or by a multistrip coupler. In these cases, the detected signal is not affected if the actual two-
dimensional distribution φ(x,y) of the surface wave potential is replaced by the averaged distribution 
( )xφ over the acoustic aperture W [8] with the Fourier transform 

 
(2.14) 

 
where in terms of the finger taps the averaged array factor 

 
(2.15) 

 
 
To determine the averaged potentials kV across the aperture W, we consider an array with two parallel 
bus-bars supplied with the potentials ±ΔV/2 and with the set of fingers with potentials Vk=±ΔV/2. Each 
electrode is connected to either of the bus-bars and is complemented by a dummy finger for the wave 
front equalization (Fig. 2.3). 
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Fig. 2.3. Finger and gap tap weights of the apodized SAW transducer 
 
The transducer apodization pattern is specified by the positions yk of the transversal gaps defined as the 
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finger length from the center line y=0 in the middle of the aperture. The transversal gaps are the gaps 
separating active fingers and dummy fingers of the opposite polarity (Fig. 2.3). The mean potential 

kV averaged across the aperture W can be found as 
 

 

/ 2 / 2

/ 2 / 2
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    (2.16) 

 
where ΔV is the voltage applied to the transducer bus-bars.  

Correspondingly, the mean gap voltage 1k k kV V V+Δ = −  is given by  

 k
k

y
V V

W
Δ

Δ = − Δ         (2.17) 

where Δyk= yk+1- yk is the overlap of the adjacent fingers with transversal gap positions yk+1 and yk, 
respectively. Thus, the effective finger and gap tap weights kV  and kVΔ  are essentially fractions of the 
bus-bar voltage ΔV which are proportional to the normalized transversal gap coordinate yk /W and 
fractional overlap Δyk /W, respectively. For calculation of the acoustoelectric conversion function of the 
apodized periodic SAW transducer, the effective tap weights (2.16) and (2.17) should be substituted 
into Eqs. (2.5), (2.6) and (2.10), (2.11) instead of the conventional potentials Vk or gap voltages ΔVk. 
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3. ADMITTANCE CALCULATION FOR PERIODIC 
SAW TRANSDUCERS 

3.1. Introduction 
 

SAW transducer admittance calculation is an integral part of the computer-aided design of SAW 
bandpass filters. Accurate modeling is necessary to predict a priori SAW filter insertion loss, simulate 
frequency response distortion due to the electrical interaction with source and load, match perfectly 
SAW devices. Unfortunately, rigorous analysis techniques [9] are impracticable due to the intrinsic 
complexity and computational slowness. In practice, the equivalent circuit model of the uniform SAW 
transducer is used [10] and aperture-channelizing technique [11, 12] is applied to model apodized SAW 
transducers. It is the transducer radiation conductance that is first calculated within SAW transducer 
model and then the numerical Hilbert transformation is performed to calculate the radiation 
susceptance [11]. 

Calculations are simplified in the quasi-static approximation [5] where superposition principle 
can be effectively applied to calculate radiation conductance of an unapodized periodic SAW 
transducer with an arbitrary polarity sequence [11, 12]. Unfortunately, simple analytic formulae 
comprising both radiation conductance and susceptance were deduced for uniform multielectrode 
transducers only [13]. 

A comprehensive approach to the analysis problem for periodic SAW transducers in the quasi-
static approximation has been developed and implemented by the author in [14-16]. The closed-form 
equations for admittance calculation comprising both acoustic conductance and susceptance have been 
deduced using the concept of the nodal admittance matrix of a SAW transducer [15]. It will be shown 
that within the model constraints applied the acoustic admittance of an aperture-weighted (apodized) 
SAW transducer can be treated as a weighted sum of the elemental interelectrode admittances, with the 
weights given by the overlaps (partial apertures) of the fingers. The nodal admittance matrix takes the 
simplest form for periodic SAW transducers with a fixed pitch and metallization ratio. In this case, the 
general formula for apodized periodic SAW transducers may be converted to the compact form by 
applying a special summation technique and taking into account the periodic properties of the nodal 
matrix [15]. 

3.2. Nodal Admittance Matrix of a SAW Transducer 
 

We shall deduce the closed-form equation for admittance calculation comprising both acoustic 
conductance and susceptance using a concept of the nodal admittance matrix of a SAW transducer in 
the quasi-static approximation. The nodal admittance matrix takes the simplest form for periodic SAW 
transducers with a fixed pitch (period) and metallization ratio.  

It can be shown using superposition principle that electrode currents Ii and voltages Vk are 
interrelated via the nodal admittance matrix with the elements Yik as follows 
 

 I = YV         (3.1) 
 
where I=[I0 I1 … IN-1] is vector of the electrode currents, V=[V0 V1 … VN-1] is vector of the electrode 
potentials, and Y=[Yik], i,k=0,N-1 is the square nodal admittance matrix of the size N, with N being the 
electrode number of a SAW transducer. Due to the reciprocity property, the nodal admittance matrix is 
symmetrical Yik=Yki and due to the causality principle for the voltages and currents, the real and 
imaginary parts of each element Yik=Gik+jBik are interrelated via a Hilbert transformation (1.16). 
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The elements Yik of the nodal admittance matrix are defined as 

 
 ( ) ( ) / , 0,ik i k iY I V V i kω ω= = ≠       (3.2) 

 
where Ii(ω) is the current induced in the i-th electrode when the k-th electrode is activated by applying 
the voltage Vk, with all the others being grounded (Fig. 3.1).  
 

ii - 1 k + 1kS A W
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Fig. 3.1. Acoustoelectric interaction of the i-th and k-th electrodes 

in the elemental SAW transducer 

 
In general case, the currents Ii(ω) contain both the acoustic and electrostatic components. The 

electrostatic component jωQi with Qi being the electrostatic charge on the i-th electrode can be found 
from the solution of the electrostatic problem and contributes to the transducer static capacitance. In 
this chapter, our primary concern is focused on the calculation of the acoustic component of the current 
Ii(ω) that is induced by the incident acoustic wave generated by the k-th electrode, with the electrostatic 
component omitted. A closed-form charge and capacitance calculation for the case of periodic SAW 
transducers will be discussed in Chapter 4. 

In the quasi-static approximation, the short-circuit current Ii(ω) induced acoustically in the i-th 
electrode of the aperture W by the k-th electrode with the applied voltage Vk can be written in the form 
[4, 5] 
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where Γ=K2/2ε is the piezoelectric constant of a substrate material, with K2 being the electromechanical 
coupling factor and ε being the substrate effective permittivity, β=ω/v is the SAW wavenumber, v is 
the SAW velocity, lik is the separation between i-th and k-th electrodes. The function ρk(ω) is the 
Fourier transform of the electrostatic charge density distribution [5] in the elemental SAW transducer 
structure where the potential Vk is applied to the k-th electrode, with all the others grounded.  

For periodic SAW transducers with a fixed pitch (period) p and a constant metallization ratio 
η=a/p where a is the finger width, it follows [5] that ρi

*(ω)= ρk(ω)= ρ (ω)= εξ(ω) where the function  
ξ (ω) is given by Eq. (2.4). Then the elements Yik(ω) of the nodal admittance matrix defined per unit 
aperture are given by the following equation [14, 15] 

 

 
| |
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where ϕ=βp is the phase lag per period, β=ω/v is the SAW wavenumber. In Eq. (3.4) the electrode 
self-admittance with an additional term jctgϕ/2 can be deduced by applying Eq. (3.3) in the particular 
case i=k that gives the radiation conductance, with the radiation susceptance found by the closed-form 
Hilbert transformation (1.16) of the self-admittance radiation conductance to satisfy the causality 



 3-3
principle [14].  

The nodal admittance matrix with the elements (3.4) has some useful properties. According to 
Eq. (3.4), the matrix elements depend on the indexes difference, i.e. Yik(ω)=Y│i-k│(ω) that allows to 
introduce one-dimension indexing of the matrix elements p=│i-k│. Therefore, the overall nodal 
admittance matrix Y contains N different elements Y│i-k│(ω) only, with each sequential row (column) 
derived by the cyclic shift of the preceding one.  

According to the physical meaning of the nodal admittances Yik(ω) in the electrical circuit theory, 
the elements Yp(ω)=-Y│i-k│(ω), p>0 may be treated as the mutual (interelectrode) partial admittances 
connected to the nearest fingers, next nearest ones, etc. (Fig. 3.2). 

 
Fig. 3.2. Mutual partial admittances connected to the i-th electrode 

 
Thus, the nodal admittance matrix Y has the following structure 
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     (3.5) 

 
where for convenience we define Y0(ω)=-Y00(ω) as the self-admittance. 

As a consequence of the Kirchhoff's law we can also predict  
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where summation is taken within infinite limits to account for correctly all the electrode currents in the 
theoretically infinite periodic structure [5]. The identity (3.6) can be verified by direct substitution of 
Eq. (3.4) into (3.6). On the other hand, the formula (3.6) obtained from the physical considerations 
gives also the way for deducing the correct equation for the self-admittance Y0(ω) from the knowledge 
of the mutual admittances Yp(ω) as  
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that excludes the closed-form Hilbert transformation of the self-admittance to satisfy the causality 
principle.  
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If the number of electrodes N is large enough we can assume with a sufficient accuracy that 
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Thus, the nodal admittance matrix for the periodic SAW transducer is completely defined, with all its 
elements correctly determined. 

3.3. Admittance of an Unapodized SAW Transducer  

3.3.1. Calculation in Terms of Finger Potentials 
 

Given the nodal admittance matrix Y and the set of the SAW transducer electrode potentials V, 
we can deduce a closed-form equation for the transducer admittance from the following energy 
conservation considerations. In the quasi-static approximation, the total (radiated and stored) acoustic 
power flow in a SAW transducer of the unit aperture W=1 is given by the following equation 

 

 1 1 (
2 2

2P Y ) Vω= = Δ*V I        (3.9) 

 
where Y(ω) is the transducer acoustic admittance, ΔV is the voltage applied to the transducer bus-bars, 
V and I are vectors of the electrode voltages and currents, respectively, and the asterisk denotes 
Hermitian conjugation. By taking into account Eq. (3.1) we can derive the following matrix equation 
for transducer admittance 
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or in scalar form 
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The last form of Eq. (3.11) accounts for that each mutual nodal admittance Yik(ω), i≠k is included in the 
double summation twice. We can also rewrite Eq. (3.11) using the concept of partial admittances Yp(ω) 
as follows 
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According to Eq. (3.12) the transducer admittance is the weighted sum of the partial admittances Yp(ω). 
If each electrode is connected to either of two bus-bars having the potentials "ΔV/2 then the weights 
Wik take the value +1/2 for all the electrode pairs with the same potentials Vi=Vk and the value –1/2 
otherwise. If one of the bus-bar has the applied potential ΔV (“hot” bus-bar) and another is grounded 
(zero potential), the weights Wik take the values 2 and 0, respectively.  

By using the identity –2Vi Vk=(Vi-Vk)2
 -Vi

2-Vk
2 and omitting the terms which depend on one index 



 3-5
only as giving negligible contribution for large N due to the property (3.8), we obtain 
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Eq. (3.13) has a clear physical meaning that the essential contribution to the admittance is given by the 
electrode pairs of the opposite polarities.  

After substituting Eq. (3.4) into (3.11) and using the identity 
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N -1 N -1 N -1 N -1 N -1 N -1 N -1

 i-k-jk -ji -jk
ik k i k i k

k=0 i=0 k=0 i=0 k=0 i=0 k=0

V = V = VV i - k VV ee V e e  ϕϕ ϕ ϕ ϕ⎛ ⎞⎛ ⎞ ⎧ ⎫
= ⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎩ ⎭
∑ ∑ ∑ ∑∑ ∑∑  (3.14) 

 
we deduce from the real part of Eq. (3.11) the known expression for the acoustic conductance [5, Eq. 
4.105]  

 
2

2

1 N -1
2 -j k 

k
k=0

G( )= W ( ) V e
V

ϕω ω ωρΓ
Δ ∑      (3.15) 

 
where ρ(ω)=εξ(ω). Contrary to Eq. (3.15) which is valid for the radiation conductance of the 
unapodized SAW transducers only, Eq. (3.11) is much more general as it allows to calculate 
simultaneously the conductance G(ω) and susceptance B(ω) of the transducer admittance 
Y(ω)=G(ω)+jB(ω). As will be shown later, Eq. (3.11) is also valid for apodized SAW transducers, with 
the weights Wik properly defined. 

3.3.2. Calculation in Terms of Gap Voltages 
 

In general case, the correct use of Eq. (3.11) should include summation in the infinite limits to 
account for contribution of the guard fingers. However, we can derive an accurate equation for 
admittance calculation in terms of gap voltages ΔVk=Vk+1-Vk which comprises summation within basic 
structure only. 

Given the vector of the gap voltages ΔV=[ΔV0 ΔV1 … ΔVN-1]T, the vector of the finger potentials 
V=[V0 V1 … VN-1]T can be found as 

 
 const= − Δ +V U V        (3.16) 

or in scalar form 

 
1 1

0
const

N N

i ik k k
k k i

V U V V
− −

= =

= − Δ = − Δ +∑ ∑      (3.17) 

 
where the upper-triangular matrix U=[Uik] contains units in the upper (non-zero) part and zeros in the 
lower part 
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1 1 1 1
0 1 1 1
0 0 1 1

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

U

K

K

K

M O M

K

       (3.18) 

 
By substituting Eq. (3.16) into (3.10) and extending the summation to the infinite limits corresponding 
to a transducer with guard fingers we obtain 
 

 2

1 ˆ( )Y
V

ω = Δ Δ
Δ

V Y V        (3.19) 

or in scalar form 

 
1 1

2
0 0

1 ˆ( )
N N

ik i k
i k

Y Y V V
V

ω
− −

= =

= Δ Δ
Δ ∑∑       (3.20) 

 
where the gap nodal admittance matrix is  
 

 *ˆ = =Y U Y U LYU        (3.21) 
 
with the matrix L=U*=UT being the lower-triangular unit matrix 
 

 

1 0 0 0
1 1 0 0

.1 1 1 0

1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

K

K

K

M O M

K

      (3.22) 

 
Eq. (3.21) may be rewritten in the following scalar form 
 

 
,

ˆ
,

mn
m i n k

ik im mn nk mn
m i n k m i n k mn

m i n k

Y i k
Y L Y U Y

Y i k
> ≤

≤ ≤ ≤ ≤
≤ >

⎧− ≥
⎪= = = ⎨
− ≤⎪
⎩

∑∑
∑∑ ∑∑ ∑∑

    (3.23) 

 
where the property (3.6) has been applied to deduce the last identity. Using Eq. (3.21) and Eq. (3.4) we 
obtain the following relationship of the voltage (gap) and potential (finger) nodal admittances 
 

 1,
0 0

,1ˆ ˆ
Re{ },(1 )(1 )

ik
ik ki mn i p k q j j

m i n k p q ik

Y i k
Y Y Y Y

Y i ke eϕ ϕ

∞ ∞

+ + − −
> ≤ = =

≠⎧
= = − = − = ⎨ =− − ⎩

∑∑ ∑∑   (3.24) 

or 

 2 2
2

,1ˆ 0.5 ( )
Re{ },4sin / 2

j i kik
ik

ik

Y i k
Y WK e

Y i k
ϕω εζ ϕ

ϕ
− −≠⎧

= =⎨ =⎩
   (3.25) 

 
where ζ(ϕ)=ξ(ϕ)/2sinϕ/2 is the gap element factor given by Eq. (2.12). 
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The same result may be obtained by using Eq. (3.15) for the radiation conductance G(ω) in terms 

of the gap voltages instead of the finger potentials and applying the closed-form Hilbert transformation 
for calculation of the radiation susceptance B(ω). 

Again, it is worthy noting that contrary to the finger taps using the gap taps assumes the finite 
summation over the basic structure as the gap voltages are identically equal to zero at the equipotential 
guard fingers. 

3.4. Admittance of an Apodized SAW Transducer 

3.4.1. Calculation in Terms of Finger Taps 
 

We consider a periodic apodized IDT specified by the transversal gap positions yk, k=0,N-1. In 
this case, all the acoustic and electric variables depend on the y-coordinate as well. However, Eq. (3.11) 
is applicable to a good accuracy to the elemental horizontal stripe of the width dy at an arbitrary 
intersection y (Fig. 3.3). 

 Δyik

 yi

 yk+1

 yi-1

 W

+ΔV/2

-ΔV/2

i-1 i k k+1

 yk

 y=0

 ydy

Δyi
Δyk

yi

yk+1

yk

 
 

Fig. 3.3. Elemental intersection and taps of an apodized SAW transducer 
and partial apertures of the fingers and overlaps  

  
The elemental stripe of width dy gives contribution Y(ω,y)dy to the total transducer admittance, with 
the admittance Y(ω,y) given by 
 

 
1 1

2
0 0

1( , ) ( ) ( ) ( )
N N

ik i k
i k

Y y Y V y V y
V

ω ω
− −

= =

=
Δ ∑∑      (3.26) 
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where Vi(y) is the potential on the i-th electrode at the intersection y. The total admittance Y(ω) of the 
apodized SAW transducer can be found by integrating Eq. (3.26) over the aperture W 
 

 
/ 2 1 1

0 0/ 2

( ) ( , ) ( )
W N N i

ik ik
i kW

Y Y y dy W Yω ω ω
− − −

= =−

= = ∑ ∑∫     (3.27) 

where the weights 
 

(3.28) 
 
 
 
with the quantities Δyik=│yi-yk│ being overlaps (partial apertures) of the i-th and k-th electrodes with 
the coordinates of the transversal gaps yi and yk, respectively (Fig. 3.3).  

For sufficiently long SAW transducers, we can neglect by the contribution of the constant term in 
(3.28) due to the property (3.6). Therefore, we obtain the following equation in terms of the partial 
admittances 

 
11 1 1

, ,
0 0 0

( ) ( ) ( )
N pN N N

i i p p i i p p
p i p i p

Y y Y y Yω ω ω
− −− − −

+ −
= = = =

Δ Δ≈ =∑ ∑ ∑∑    (3.29) 

 
Thus, the admittance of the apodized SAW transducer is the weighted sum of the elemental nodal 
admittances, with the weights given by the partial apertures Δyik. Eq. (3.29) can be reduced to the 
following compact form that minimizes considerably the computation time 
 

 
0

( )
N -1

p p
p=

Y( )= L Yω ω∑        (3.30) 

where 

 ,or
N - p-1 N -1

pp k,  k+ p k k p
k=0 k= p

= yyL L     =  .−ΔΔ∑ ∑     (3.31) 

  
The quantities Lp are effective apertures composed of the total overlaps of all the nearest neighbor 
electrodes, next nearest ones, and so on, respectively. As can be seen from Eq. (3.31), the effective 
apertures depend on the SAW transducer apodization and do not depend on the frequency. Therefore, 
their computation is a single-time routine procedure, for a particular apodized SAW transducer. As the 
partial admittances jp

pY e ϕ−∼ are proportional to the exponential function (see Eq. (3.4)), the transducer 
admittance Y(ω)=G(ω)+jB(ω) (3.30) is virtually defined by the Fourier transform of a set of the 
effective apertures Lp. Therefore, once a set of the effective apertures Lp has been calculated and stored 
in the memory, the calculation of SAW transducer admittance comprising both conductance G(ω) and 
susceptance B(ω) using Eq. (3.30) takes no more time than calculation of the transducer frequency 
response using Eqs. (2.13), (2.14). The Fast Fourier Transform (FFT) can be applied to admittance 
calculation in the wide frequency range to further reduce the computation time if necessary. 

3.4.2. Calculation in Terms of Overlap Taps 
 

By applying Eq. (3.20) to the elemental intersection of an apodized SAW transducer in the form 
 

/ 2

2
/ 2

,1 2 4( ) ( )
1 ,

2

W

ik i k
ikW

ik

W i k
W V y V y dy

WV y i kδ−

⎧ =⎪⎪= = ⎨+Δ ⎪ − Δ ≠
⎪⎩

∫



 3-9

( )( )

[ ]

1 1 1 1

1 12 2
0 0 0 0
1 1

1 1 1 12
0 0

1 1ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

N N N N

ik i k ik i i k k
i k i k
N N

ik i k i k i k i k
i k

Y y Y V y V y Y V y V y V y V y
V V

Y V y V y V y V y V y V y V y V y
V

ω ω ω

ω

− − − −

+ +
= = = =

− −

+ + + +
= =

= Δ Δ = − − =
Δ Δ

+ − −
Δ

∑∑ ∑∑

∑∑
(3.32) 

 
we can deduce the following equation for the admittance Y(ω) of the apodized SAW transducer by 
integrating Eq. (3.32) over the aperture 
 

 
1 1

0 0

ˆ ˆ( ) ( ) ,
N N i

ik ik
i k

Y W Yω ω
− − −

= =

=∑ ∑       (3.33) 

 
/ 2

1, , 1 1, 12
/ 2

1 2ˆ ( ) ( )
1

W

ik i k i k i k ik i k
ikW

W V y V y dy y y y y
V δ + + + +

−

= Δ Δ = Δ + Δ −Δ −Δ
Δ +∫   (3.34) 

 
where the quantities Δyik=|yi-yk| are overlaps of the i-th and k-th fingers. As integration in Eq. (3.34) 
gives non-zero contribution to ˆ

ikW  only for those overlap regions where ΔVi(y)ΔVk(y)≠0, the physical 

meaning of the quantities ˆ
ikW  is rather straightforward: this is the partial overlap of the i-th and k-th 

overlaps Δyi=yi+1-yi and Δyk=yk+1-yk, respectively (Fig. 3.3). It follows that ˆ0 min{| |,| |}ik i kW y y≤ ≤ Δ Δ , 
in general case. 

3.5. Calculation Example and Experimental Results 
 

An example of the modeled and measured admittance characteristics for a SAW bandpass filter is 
shown in Fig. 3.4. The SAW filter has the following parameters: central frequency f0=42.7 MHz, 
fractional passband width (at -3 dB) 10 %, and shape factor of 2 (at -3 and -40 dB). The filter contains 
a regular unapodized and another apodized SAW transducer, both with split fingers (synchronous 
frequency fπ=2f0). Electrode numbers are N1=38 and N2=118, respectively. The transducers have equal 

apertures W=2.35 mm and metallization ratio η=0.5. The substrate material is YZ lithium niobate with 
the electromechanical coupling factor K2=4.5% and effective permittivity ε=50εo. 

Input and output transducer capacitance was calculated by applying the technique [16]. Both 
unapodized and apodized SAW transducer admittances were calculated in terms of the overlap taps 
using Eq. (3.33). There is good agreement between modeled and measured characteristics in the wide 
frequency range. The predicted insertion loss value of -19.5 dB agrees well with the measured value of 
-20 dB. 

3.6. Conclusions 
 

The general formula for calculation of the admittance of apodized SAW transducers has been 
deduced in the quasi-static approximation using nodal admittance matrix of a SAW transducer. By 
applying a special summation technique for periodic SAW transducers the general formula has been 
reduced to the compact form resulting in considerable reduction of the computation time if compared to 
the wide-spread aperture channelizing technique commonly used [11, 12]. According to this formula, 
the acoustic admittance is given by the Fourier transform of the effective apertures, with effective 
apertures values being the total overlaps of all the nearest neighbor fingers, next nearest ones, and so 
on, respectively. Effective apertures are uniquely defined by finger overlaps and do not depend on the 
frequency. Assumed for a set of the effective apertures to be determined a priori, acoustic admittance 
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calculation comprising both radiation conductance and susceptance takes no more time than frequency 
response calculation. 

The method is quite general and may be applied to capacitively-weighted, polarity-weighted, 
multi-phase, and other periodic SAW transducers having the central frequency far away from the 
synchronous frequency. Results of admittance calculation for SAW transducers with split (double) 
fingers are presented which agree well with the measured admittance characteristics. 
 
 

Frequency, MHz

measured
modeled

G

B

 
 

a) input unapodized SAW transducer 
 
 
 

 
b) output apodized SAW transducer 

 
Fig. 3.4. Modeled and measured admittance characteristics of a SAW bandpass filter 

Frequency, MHz

measured
modeled

B

G
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4.  STATIC CAPACITANCE CALCULATION FOR PERIODIC 

SAW TRANSDUCERS 

4.1. Statement of the Problem 
 

Properties of SAW interdigital transducers (IDT) can be deduced, to the first order, from the 
electrostatic solution ignoring piezoelectricity (quasi-static approximation) [4, 5]. Rigorous treatments 
of the problem for arbitrary finite length IDT based on the Green's function approach are available [5, 
8]. However, extensive calculations are necessary to evaluate charge density distribution and/or IDT 
capacitance by applying point-matching techniques (method of moments [17, 18], for example). 

Fig. 4.1. Generalized periodic SAW transducer 
 

Fortunately, in many practical cases an interdigital transducer can be modeled as the periodic array of 
metallic strips with the arbitrary voltages applied (Fig. 4.1a). The solution is considerably simplified by 
applying superposition principle [8] and the known analytic solution for the elemental charge density 
distribution in the infinite periodic single tap transducer having all electrodes grounded, except for the 
one with unity potential [5-8]. End effects associated with charge density distortion near the ends of a 
finite length IDT may be suppressed by adding special dummy (guard) grounded fingers at each side of 
the IDT [5, 8] (Fig. 4.1b). 

However, the known solutions in terms of the elemental charge density distribution in the infinite 
single tap transducer [5-8] suffer from some drawbacks. In general case, the solution includes 

p
a

a) without guard fingers

N0

b) with guard fingers

N0

N =N0+Ng
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complicated integrals of Legendre functions that is inconvenient for practical use. Moreover, there is 
uncertainty with regard to the number of guard electrodes to be introduced in a real IDT to sufficiently 
suppress the electrostatic end effects. This number depends on the transducer geometry and tends 
theoretically to infinity.  

Here we follow another approach to model periodic SAW transducers proposed and developed in 
[14, 16] where the initial electrostatic problem is approximated by an auxiliary one with the periodic 
boundary conditions on the surface. To this end, an entire IDT containing N electrodes with arbitrary 
voltages Vi is treated as one generalized period of the infinite periodic array constructed by the 
sequential multiple replication of the initial transducer (Fig. 4.2). Provided for sufficient uncoupling 
between adjacent periods due to the special uncoupling grounded (Fig. 4.2a) or floating (Fig. 4.2b) 
fingers, the solution to be obtained for one period might be a good approximation to the initial problem.  

Fig. 4.2. Periodic SAW transducer with uncoupling (guard) electrodes 
 

Assumed for all the electrode potentials to be a priori prescribed, the closed-form solution of the 
auxiliary electrostatic problem can be deduced from the basic charge density distribution in a periodic 
phased array of the strips [6, 7]. The phased array has the same voltages impressed with the phase 
progressing uniformly along the array [6, 7]. The solution for one period of the generalized periodic 
SAW transducer has been found by applying the Floquet's theorem and superposition principle [14, 

N=N0 + Ng

Period
N N

a) connected (grounded) uncoupling electrodes

b) disconnected (floating) uncoupling electrodes

N0

N=N0 + Ng

Period
N N

N0
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16]. Results for the infinite periodic arrays [6, 7] follow from the theory as a particular case of the 
infinite period N → ∞ . 

The initial electrostatic problem is stated by the electrode geometry of Fig. 4.1 where the basic 
periodic structure of N0 strips is considered. All the strips have the uniform width a and fixed pitch p 
throughout the transducer and hence the constant metallization ratio η=a/p. The electrodes are allowed 
to take on any voltages Vi with arbitrary magnitude and phase. It is assumed where appropriate that 
electrodes are concerned to either of two bus-bars. 

An auxiliary periodic structure with connected (grounded) or disconnected (floating) uncoupling 
fingers is shown in Fig. 4.2. It is worthy noting that floating uncoupling strips in 4.2b allow better 
uncoupling between adjacent periods as they have zero net charge. However, the presence of the 
disconnected (floating) strips complicates considerably the problem since their potentials must be 
beforehand determined. In this chapter, we shall confine our further consideration with the case of the 
equipotential guard fingers connected to either of the bus-bars. 

 Therefore, the problem is to determine charge density distribution, net electrode charges, and 
static capacitance for one generalized period containing N=N0+Ng electrodes, with N0 being the number 
of electrodes in the basic structure and Ng being the total number of the uncoupling (guard) fingers.  

4.2. Phased Array Transducer and Basic Analytic Equations 
 

According to the Floquet's theorem for periodic structures, the voltages and charges on the same 
electrodes of different periods must be the same apart from the phase shift. Therefore, the electrostatic 
problem should be solved for one generalized period only. 

Supposed for all the electrode voltages to be known a priori, a set of the arbitrary voltages on the 
electrodes can be synthesized as follows 
 

 
1 1

0 0

1 , , 2 /s i

N N
j i j s

i s s i s
s i

V V e V V e s N
N

ϕ ϕ ϕ π
− −

−

= =

= = =∑ ∑% %     (4.1) 

or in matrix form 
 -1V = HV , V = H V% %         (4.2) 

 
where V=[V0V1 ...VN-1]T is vector of the electrode voltages and an auxiliary vector T

0 1 1= [ ... ]NV V V −V% % % %  
contains voltages on a set of the phased array transducers, each with the same strip voltage sV%  and 
phase progressing uniformly along the array at the rate ns=2πs/N (Fig. 4.3). 

Fig. 4.3. Phased array transducer 

 

z

x
 y

θ=2πx/p,  Δ=πη, η=a/p, ϕs=2πs/N 

ε0 

V0 V1 VN-1 VN= V0 

… 

…V-1= VN-1 … εp 

Period N

sV% sj

seV ϕ−% ( 1) sj N

seV ϕ− −%… sjN

s seV Vϕ− =% %  sj

seV ϕ%… 

2π
2Δ



 4-4

 
The vectors V and V% are interrelated via a square matrix 1

0[ ]Nish
−=H  of the size N with 

elements 1
sj i

is N
h e ϕ−= . The matrix H has the closed-form inverse matrix H-1=N H* with elements 

ij s
ish e ϕ= where the asterisk denotes matrix Hermitian conjugation. 

The charge distribution in a phased array transducer is known to be of the form [6, 7] 
 

 ( ) ( )s s sVσ θ γ θ= %%%        (4.3) 
 

sin( )
( cos ) cos cos

1
2-j (s /N - ) 

s
-s /N

2 2  s /N e  =       , | |  
p   - -P

θε πθ θγ
θ

≤ Δ
Δ Δ

%     (4.4) 

 
where Δ=πη; ε=ε0+εp is the surface effective permittivity, ε0 is permittivity of the medium above the 
surface; 2

11 33 13pε ε ε ε= − is the effective permittivity of the substrate; P-s/N(-cosΔ) is the Legendre 
function, and θ=2πx/p denotes a dimensionless variable related to coordinate x. 

The total charge on the electrode of a phased array transducer can be found by integrating (4.3), 
(4.4) over the strip width [6, 7] using the Mehler-Dirichlet's formula [19] 

 
 ,s s sQ Vγ=% %%         (4.5) 

 

 cos2 sin
cos

-s /N
s

-s /N

  (  )P =   s /N 
  (- )P

ε πγ
Δ
Δ

%       (4.6) 

 
Thus, according to Eq. (4.1) an arbitrary periodic IDT containing N electrodes in the generalized period 
can be effectively modeled by superposition of a set of N phased array transducers in terms of the 
known closed-form solutions (4.3)-(4.6) for the charge distribution in the elemental phased array 
transducers. 

4.3. Surface Charge Density Distribution 
 

By applying the superposition principle (4.1) the charge density distribution on the i-th electrode 
can be expressed as 

 
1

0

1( ) ( ) s

N
j i

i s
s

e
N

ϕσ θ σ θ
−

−

=

= ∑ %       (4.7) 

where s( )θσ%  is the charge density distribution in the s-th phased array transducer with the strip voltage 
� sV . By substituting (4.3), (4.4) into (4.7) and taking into account the second Eq. (4.1) we can derive 
after some manipulations with indexes the following closed-form expression 
 

 ( ) ( ) ,
N -1

pi i p
p=0

 = Vσ θ θγ −∑        (4.8) 

 2 /1( ) ( )
N -1

j ps N
p s

s=0
e

N
πθ θγ γ −= ∑ %       (4.9) 
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where the coefficients γp(θ) represent the basic charge density distribution on the period of N electrodes 
with one electrode activated and all others grounded and with the zero index p=0 attributed to the 
activated finger. According to Eq. (4.8), the charge distribution σi(θ) is given by the convolution 
product of the basic charge distribution γp(θ) with the electrode voltages Vi. 

As an example, the charge density distributions on one period of the multielectrode periodic 
Engan's transducers [13] are shown in Fig. 4.4 for N=2, 3, 4, and 6 with different polarity sequences for 
metallization ratio η=0.5. 

a) N=2

b) N=3

c) N=3

d) N=4

e) N=4

f) N=6
 

Fig. 4.4. Charge density distribution on one period 
of the periodic multielectrode Engan’s transducers 

 
4.4. Interrelation of Electrode Charges and Voltages.  

Capacitive and Potential Matrices 
 

By integrating (4.8), (4.9) over the electrode width we deduce the following closed-form relations 
to express charges in terms of electrode potentials and vice versa [14, 16]: 

 

 , ,
N -1 N -1

i p i p i p i p
p=0 p=0

Q   V V Q γ γ +
− −= =∑ ∑       (4.10) 

where 
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%

%

1
2 /

0

1 N
sp j s N

p s s

e
N

π
γγ

γ γ

−
−

+ +
=

⎧ ⎫⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪⎩ ⎭

∑       (4.11) 

or in matrix form 
+Q = ΓV , V = Γ Q        (4.12) 

 
 -1 + -1 +Γ = H ΓH , Γ = H Γ H% %       (4.13) 

 
where "+" denotes pseudo-inversion [20] of the matrix Γ which is degenerate due to the charge 
neutrality condition. The elements of the diagonal matrices Γ% and +Γ% are interrelated as % s s1/γ γ

+
= % ,  

s …0 with %0 = 0γ
+

where the matrix elements % sγ  are given by Eq. (4.6).  
The capacitive matrix Γ relating the electrode charges to voltages has the structure 
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      (4.14) 

 
and the pseudo-inverse potential matrix Γ+ relating voltages to charges has the same structure, with the 
elements pγ  replaced by the pγ

+ . 
The quantities γp=γp(N, η) are the charges on the electrodes of the basic periodic structure, with 

only one electrode of the period activated. They are slowly varying functions of the metallization ratio 
η and fall off rapidly (at a rate of the order 1/p2) as the relative electrode number p increases. The 
coefficients γp take the simplest form in the particular case of η=0.5 when % 2 sin /s s Nγ ε π= . In this 
case, Eq. (4.11) is reduced to the simple analytic formula 

 

 sin2 ,
cos cosp

 p /N p = 0, 1, ... , N - 1.
N  (  2 p /N -  p /N)

γ ε
π

=    (4.15) 

 
The known results [6, 7] follow from Eqs. (4.11) and (4.6) as the particular limiting case of N 6 4, with 
the discrete variable s/N replaced by the continuous variable ν and summation replaced by integration: 
 

 
1

0

(cos )sin
( cos )

--j 2  p 
p

-

 P= ( ) e d  , ( )= 2    , p = 0, 1, 2,  ...
-  P

νπ ν

ν

γ γ ν ν γ ν ε πν Δ
Δ∫ % %   (4.16) 

4.5. Static Capacitance of a SAW Transducer 
 

We can deduce an analytic expression for the static capacitance C using the energy conservation 
law written in the form 
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 21 1
2 2

C VΔ = *V Q        (4.17) 

 
where ΔV is the voltage applied to the transducer bus-bars, V=[V0 V1 … VN-1]T and Q=[Q0 Q1 … QN-1]T 
are vectors of the voltages and charges on the electrodes, respectively. Substitution of the first Eq. 
(4.12) into (4.17) leads to the following expressions for the capacitance of an unapodized SAW 
transducer of the unit aperture W=1 

 2 2

1 1C
V N V

= =
Δ Δ

* *V ΓV V ΓV% % %       (4.18) 

or in the scalar form 

 
2

2

1 1 ,
N -1 N -1 N -1

s
ik i k s s s

i=0 k=0 s=1

VC = VV =  C C
V N V

γ γ=
Δ Δ∑∑ ∑

%
% % %     (4.19) 

 
where the quantities γik=γ*i-k*, i…k may be interpreted as the charges on the capacitors Cp=-γp, p=*i-k* 
connected between i-th and k-th electrodes (Fig. 4.5), with γ0 equal to the total sum of the charges on all 
capacitors.  

 
Fig. 4.5. Interelectrode capacitors 

 
By using the identity 2 2 22 ( )i k i k i kVV V V V V= + − − and the charge neutrality condition within one period 
 

 
1 1

0 0
0

N N

ik ik
i k

γ γ
− −

= =
= =∑ ∑       (4.20) 

       
and taking into account the full transducer aperture W, the first Eq. (4.19) may be converted to the form 

 

 
N -1 N -1 N -1 i-1

1
i k i k i ki k i k2

i=0 k=0 i=0 k=0

i k
 2-V V

VC = -  = -   ,  =  W W W Wγ γ ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠Δ∑∑ ∑∑    (4.21) 

 
If each electrode is connected to either of bus-burs (Vi="ΔV/2) then Wik=0 for Vi=Vk and Wik=W for 
Vi…Vk. Thus, the partial apertures Wik are equal to the overlaps of the i-th and k-th electrodes. 

Eq. (4.21) can be converted to the compact form by using the symmetry properties and reordering 
the summation  

 
N -1

p p
p = 1

C = C L∑        (4.22) 

C1 C1

C2 C2

Vi Vi+1 Vi+2 …Vi-1Vi-2…
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where 

 , ,or , , 1
N -1- p N -1

p k k p p k k p
k = 0 k = p

L W L W p 0 N+ −= = = −∑ ∑     (4.23) 

The quantities Lp are the total overlaps of all the nearest neighbor electrodes, the next nearest ones, and 
so on, respectively. Following the same considerations as for the transducer admittance calculation, we 
can see that the static capacitance is composed of the weighted interelectrode capacitors, with formula 
(4.23) being applicable both to unapodized and apodized SAW transducers with arbitrary polarity 
sequences.  
 The results for the static capacitance calculation agree with those for the transducer admittance 
calculation in Chapter 3. Eq. (4.22) for the static capacitance has the same form as Eq. (3.30) for the 
transducer admittance. The weights Wik and the quantities Lp in Eqs. (4.22), (4.23) have basically the 
same meaning as in the case of the admittance calculation. Therefore, the capacitors Cp=-γp could be 
included in the elemental admittances Yp=Gp+jBp+jωCp. However, this is advantageous to calculate 
separately the radiation part of the admittance Gp+jBp and the static capacitance C. 

The known Engan's results for the capacitance of multielectrode periodic transducers [13] follow 
from the second Eq. (4.19) as the particular case for N=2, 3, 4, and 6, with the capacitance values per 
period given in Table 4.1 for the metallization ratio η=0.5.  

Table 4.1 
 

Capacitance of the multielectrode periodic SAW transducers  
 

N   
Vk, k=0,N-1 %

1 /γ ε  2

1 /V VΔ%  C/ε 

2 +  − 2 1 1 
3 +  − + 3  1 2 / 3  
3 +  0 − 3  3/4 3  
4 +  + − − 2  2 3 / 2  
4 +  0  −0 2  1 1/ 2  
6 +  0  − − 0 + 1 3 1 

 

4.6. Conclusions 
 

The complete closed-form solution of the electrostatic problem for periodic SAW transducers has 
been considered in this chapter where IDT is treated as one generalized period of the periodic structure 
derived by sequential multiple replication of the initial IDT. Special uncoupling grounded fingers 
(guard electrodes) are introduced to uncouple between adjacent periods while calculating and to 
suppress end effects in the real finite length IDT. 

Known results for infinite periodic arrays follow from the theory as a particular limiting case of 
the infinite period N→∞. However, the advantages of the proposed approach are apparent: 

1. Physical redundancy of the infinite array is removed. 
2. There is a simple criterion (uncoupling between periods) to evaluate a number of the 

uncoupling fingers to be introduced in the real IDT to suppress end effects. 
3. Closed-form expressions are derived in terms of finite summation instead of finite series and 

integrals. 
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5. MULTISTRIP COUPLER MODELING: TWO-MODE APPROACH 

5.1. Concept of a Multistrip Coupler 
 
 A conventional multistrip coupler (MSC) [21-24] consists of an array of the identical metallic 
strips oriented parallel to the surface acoustic wave wavefront on the surface of the piezoelectric 
substrate (Fig. 5.1).  

 
Fig. 5.1. Multistrip coupler and normal mode representation 

 
The major purpose of using the MSC is to transfer laterally the surface power of the acoustic wave 
incident to one of its ports. The output acoustic wave occupies an adjacent track with respect to the 
incident input wave. Therefore, in SAW filters the MSC can be used to couple acoustically two 
interdigital transducers whose active regions do not overlap. This arrangement has the practical merits 
that 1) two apodized SAW transducers can be used, with the overall SAW filter response easily 
calculated and 2) spurious signals due to excitation of the bulk waves are much suppressed as only the 
surface acoustic waves are effectively coupled through a MSC. 
 The basic MSC mechanism is a straightforward consequence of the piezoelectric effect. A 
surface wave incident in one track causes voltages induced on the conducting metallic strips. As the 
strips are assumed to be perfect conductors, the same voltages are applied to in the second track 
generating a secondary output surface wave. At any frequency, the induced voltages have the same 
relative phases corresponding to the propagating surface wave, so that the partial waves generated by 
the strips in the second track are in-phase. One could intuitively anticipate that this should result in a 
wide bandwidth of the coupler. Therefore, the MSC can be effectively used for acoustic energy transfer 

N
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b1

a2

b2

a4

b4

a3
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2
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4
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in the wide frequency band. As the number of the MSC strips depends inversely on the piezoelectric 
coupling of the substrate material [21-24], the application of the MSC is practicable for strongly 
piezoelectric materials such as lithium niobate, for example. 

5.2. Normal Mode Representation of a Multistrip Coupler 
 
 The MSC analysis in this chapter is based on the following assumptions: 

1) the MSC is periodic with a constant strip width a and pitch (period) p throughout the structure; 
2) both acoustic tracks are identical and have equal aperture W/2 ; 
3) the width W of the acoustic tracks is much larger than the MSC period p, i.e. W/p>>1 so that we 

can neglect the transversal end effects; 
4) number of the MSC strips is sufficiently large to neglect end effects in the finite length MSC; 
5) coupling to bulk waves can be neglected; 
6) diffraction of the acoustic waves can be neglected; 
7) MSC strips are perfectly conducting so that each strip can be considered as the equipotential 

conductor;  
8) surface waves propagate perpendicular to the strips; 
9) metal strips are infinitely thin and deposited on a strongly piezoelectric substrate like lithium 

niobate so that we can neglect interelectrode mechanical reflections due to the mass loading; 
10) the frequency range is limited to the baseband including the first stopband. 

 
In common with other coupled-mode systems, a quantitative description can be obtained in terms 

of the propagating normal modes of the structure which are essentially the solutions where all the field 
variables such as surface potential φ(x) have the property φ(x+p)exp(-jkp) with k being the 
wavenumber, so far unknown. By other words, the normal modes of the structure are the acoustic field 
patterns which are not distorted on propagating through the coupler, with each mode propagating 
through the coupler independently of others. 

We first consider an infinite array (N→∞) of regular strips with width a and pitch p. The strip 
length W in the transversal direction is assumed to be sufficiently large. Therefore, all the field 
quantities over the strips can be taken to be independent of y. The voltage on the n-th electrode is Vn 
while the current entering this electrode is In. As the structure is periodic with the period p in the x-
direction, we can apply the Floquet’s theorem to the solutions for the strip voltage and current which 
take the form 

0
jknp

nV V e−=                                                                      (5.1) 

0
jknp

nI I e−=                                                                      (5.2) 
 
It is worthy to note that these solutions are unaffected if a multiple of 2π/p is added to k. The solutions 
must satisfy to the boundary conditions. Within the model constraints applied, the electrical boundary 
conditions are as follows: 
 

1) the strip potential and current are continuous at the intersection between two tracks; 
2) the net charge on the strip is equal to zero due to the charge neutrality condition; 
3) strip current density is equal to zero at the ends of the strip. 

 
The latter is an approximation that neglects the stray field at the end of the strips and the diffracted 
acoustic field. The contribution from the stray field is negligible when the strips are much longer than 
the period p and the diffraction is believed to be small for the normal modes. 

As a SAW velocity under the structure is slower than the free surface velocity, we may conclude 
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that the MSC of the finite width W must act as a waveguide. Even in case of the perfectly conducting 
strips there exist infinite number of the symmetric and antisymmetric orthogonal normal modes of the 
structure propagating with different phase velocities [25]. For the infinitely wide aperture W→∞, the 
normal modes degenerate into two lowest symmetric and antisymmetric rectangular modes. For the 
wide apertures (say, W/λ>30), these two modes are dominating. Therefore, the MSC behavior can be 
modeled in terms of these modes, to a good degree of accuracy. Any input wave pattern that is uniform 
can be decomposed into these modes as shown in Fig. 5.1.  

In general, the symmetric and antisymmetric modes propagate with different velocities vs and vas, 
respectively and it is beating of these two modes that leads to a periodic change of energy in the tracks. 
Particularly, when these two modes are in anti-phase while propagating on the acoustic path the input 
acoustic energy is transferred from one track to another. 

The physical meaning of the symmetric and antisymmetric rectangular modes is rather 
straightforward and follows from the properties (5.1) and (5.2). We denote the electrode coupled 
voltages and currents Vn

u, In
u and Vn

l, In
l for upper and lower tracks of the n-th strip, respectively. As 

the strips are supposed to be equipotential, the voltages are the same in both tracks 
 

u l
n nV V=                                                                         .(5.3) 

 
On the other hand, as the strips are isolated and both tracks are identical, the charge neutrality condition 
requires 
 

u l
n nI I= −                                                                          (5.4) 

 
We can define the modes by reference to the coupled voltage and current conditions. The symmetric 
mode has a uniform amplitude and phase distribution over the strip, i.e. the acoustic potential φn

u =φn
l is 

the same for both tracks. Therefore, it satisfies to the condition of the zero coupled flux (charge flowing 
from one half of a strip to another) giving In

u = In
l=0. As the velocity is the same in each track, 

amplitude and phase synchronism is maintained during propagation irrespective of whether or not the 
metal strips are connected at the intersection line separating the tracks. The voltages on the 
corresponding strips in each track are identical Vn

u = Vn
l , whether joined or not. Therefore, no charge 

flows between them giving the condition of the zero coupled flux. Since there are no charge flows 
between the tracks, each track supports propagation of the mode as if its electrodes were open-
circuited. This is the same as the solution for the open-circuit periodic grating. Consequently, the 
symmetric mode wave number is ks= koc where koc is the wavenumber in the open-circuit grating. 
 The antisymmetric mode is defined by the condition of the zero coupled potential. This mode is 
composed of waves propagating in two tracks in anti-phase. Physically, this is to be expected when the 
acoustic potentials in the two tracks are equal and opposite, i.e. φn

u =-φn
l. Therefore, equal and opposite 

surface charges would be generated in each strip if they were not joined. By connecting them charges 
flow and exact charge compensation takes place due to the charge neutrality condition giving In

u = -In. 
Consequently, no voltage appears at any strip and the condition of the zero coupled potentials Vn

u = 
Vn

l=0 applies. Since all the strip voltages are equal to zero, each track supports propagation of this 
mode as if its electrodes were all connected (short-circuited). Therefore, the antisymmetric mode 
wavenumber is ka= ksc where ksc is the wavenumber in the short-circuit periodic grating. 
 Thus, the symmetric and antisymmetric modes are essentially the surface waves propagating in 
the open- and short-circuit periodic gratings, with their wavenumbers given by koc and ksc, respectively. 
This assumption simplifies greatly the MSC analysis as the known results of the theory of periodic 
gratings can be applied [26, 27]. 
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5.3. Scattering Matrix of a Multistrip Coupler 
  
 The MSC scattering matrix S relates the amplitudes of the reflected waves bi with amplitudes of 
the incident waves ai, 1, 4i =  at the MSC ports 
 

 B = SA         (5.5) 
 
where A=[a1 a2 a3 a4] 

T and B=[b1 b2 b3 b4] 
T are vectors of the incident and reflected waves, 

respectively, and 
 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

.

s s s s
s s s s
s s s s
s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S       (5.6) 

 
For the regular MSC shown in Fig. 5.1, all the ports are symmetric and acoustically equivalent. 
Therefore, by symmetry and reciprocity it follows that the matrix S contains only four independent 
elements, i.e. 
 

 

11 12 13 14

12 11 14 13

13 14 11 12

14 13 12 11

.

s s s s
s s s s
s s s s
s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S       (5.7) 

 
Supposed for the scattering matrices of the symmetric mode (open-circuit grating propagation) and 
antisymmetric mode (short-circuit grating propagation) to be known a priori 
 

 
, ,

, 11 12
, ,

21 22

,
a s a s

a s
a s a s

s s
s s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S        (5.8) 

 
we can express the MSC scattering matrix in terms of the scattering coefficients of the modes by 
applying the appropriate boundary conditions at each port. 
 Let the wave a1=a in the upper track be the only incident wave in the system (ai=0, i=2,3,4). By 
expansion of the waves in the upper and lower tracks a1=a and a2=0 at the left-hand side of the MSC 
into symmetric and antisymmetric modes we obtain the following boundary conditions in terms of the 
normal modes 
 

 1 1 1

2 2 2

.
0

s a

s a

a a a a
a a a
⎧ = + =
⎨

= + =⎩
      (5.9) 

 
As the symmetric mode has the same amplitudes in two tracks a1

s= a2
s and the antisymmetric mode has 

opposite amplitudes a1
a=-a2

a we can find the mode amplitudes  
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 1 2

1 2

/ 2
.

/ 2

s s

a a

a a a
a a a
⎧ = =
⎨

= − =⎩
      (5.10) 

 
Now, we can express the reflected waves bi in terms of the reflected symmetric and antisymmetric 
modes which are related with the incident modes through the corresponding scattering coefficients [28, 
29] 

 

1 1 1 11 1 11 1 11 1

2 2 2 11 2 11 2 11 1

3 3 3 21 1 21 1 21 21 1

4 4 4 21 2 21 2 21 21 1

1 ( )
2
1 ( )
2
1 ( )
2
1 ( )
2

s a s s a a s a
ss

s a s s a a s a
ss

s a s s a a s a

s a s s a a s a

b b b s a s a s s a

b b b s a s a s s a

b b b s a s a s s a

b b b s a s a s s a

⎧ = + = + = +⎪
⎪
⎪ = + = + = −⎪⎪
⎨
⎪ = + = + = +
⎪
⎪
⎪ = + = + = −
⎪⎩

     (5.11) 

 
From. Eq. (5.11) we find the following MSC scattering coefficients 
 

 

1
11 22 11 11

1

2
12 21 11 11

1

3
13 31 21 21 12 12

1

4
14 41 21 21 12 12

1

1 ( )
2
1 ( )
2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

s a

s a

s a s a

s a s a

bs s s s
a
bs s s s
a

b
s s s s s s

a
bs s s s s s
a

= = = +

= = = −

= = = + = +

= = = − = −

     (5.12) 

 
Thus, the independent elements of the MSC scattering matrix sik are determined in terms of the 
scattering matrices for symmetric and antisymmetric modes sik

s and sik
a. 

 Therefore, in the two-mode assumption the problem of MSC analysis is split into two separate 
tasks: 

1) modeling the propagation and scattering of the symmetric and antisymmetric modes which 
are essentially normal modes of the open- and short-circuit periodic gratings; 

2) construction of the MSC scattering matrix (5.7) from the corresponding scattering matrices of 
the modes using Eq. (5.12). 

5.4. Properties of the Normal Modes in the Periodic Gratings 

5.4.1. Wavenumber and SAW Velocity 
 
 Surface wave propagation in the periodic gratings on the piezoelectric substrate was first 
investigated in [27, 28] where a concept of the wavenumber-dependent permittivity was applied to the 
piezoelectric substrate. For the ideally conducting infinitely thin electrodes, the solution for the 
periodic electric fields was found by applying Floquet’s theorem and using Legendre polynomial 
expansions. Closed-form dispersion relations for the short- and open-circuited electrodes in the 
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infinitely long periodic structures were deduced within and outside the grating stop-band. The results 
were further generalized in the weak-coupling approximation [30, 31] that assumes for the incident 
wave amplitude to be constant while traversing the electrode region. The reflection coefficients of the 
open- and short-circuit strip in the infinite periodic grating were found in the closed-form in terms of 
the Legendre function expansion [5]. 
 We start from the equations for the propagation constants in the periodic grating. By applying the 
general approach [27, 28] to the analysis of SAW propagation, the following equations for the 
wavenumbers ksc and koc in the short- and open-circuit electrodes were deduced [5, Eq. (D26, D29)] 
 

 2 2 2 2
0 0

( cos )1 ( ) 1
2 ( cos )sc m

P
k k k k

P
ν

ν−

⎡ ⎤− Δ
= + − +⎢ ⎥− Δ⎣ ⎦

     (5.13) 

 2 2 2 2
0 0

(cos )1 ( ) 1
2 (cos )oc m

P
k k k k

P
ν

ν−

⎡ ⎤Δ
= + − −⎢ ⎥Δ⎣ ⎦

     (5.14) 

 
where k0=ω/v0 is the free-surface SAW wavenumber and km=ω/vm is the metallized (electrically 
shorted) surface SAW wavenumber, with v0 and vm being the free- and metallized SAW velocities, 
respectively. Strictly speaking, in Eqs. (5.13), (5.14) the variable ν in the index of the Legendre 
function should be equal to ν=ksc,oc/2π, so that these equations were transcendental. However, since the 
Legendre functions vary slowly with ν , a good approximation is obtained by using ν≈k0/2π that makes 
the right-hand side be independent of ksc,oc. 

The wavenumber difference is given by the following expression 
 

 
2 2

2 2 0

0

2sin
( cos ) (cos )

m
sc oc

k k
k k

k p P Pν ν

πν

− −

−
− =

− Δ Δ
    (5.15) 

 
where the identity for the positive and negative values of the indexes and arguments of the Legendre 
function 
 

 2sin(cos ) ( cos ) ( cos ) (cos )P P P Pν ν ν ν
πν

πν− −Δ − Δ + − Δ Δ =    (5.16) 

 
has been used  [5, Eq. (C6)]. 

By using the approximation for the piezoelectric coupling factor  
 

 
2 2

2 0 0 0
2

0 0 0

2 2 2m m mv v k k k kvK
v v k k

− − −Δ
= = ≈ ≈     (5.17) 

Eq. (5.15) can be converted to the form 
 

 2 2 20 2sin .
( cos ) (cos )sc oc

k
k k K

p P Pν ν

πν

− −

− ≈
− Δ Δ

    (5.18) 

By applying the expansion 1 1 / 2 , 1x x x+ ≈ +  we obtain 

 2
0 0 0

( cos ) ( cos )1 1( ) 1 1 1
2 ( cos ) 4 ( cos )sc m

P P
k k k k k K

P P
ν ν

ν ν− −

⎛ ⎞⎡ ⎤ ⎡ ⎤− Δ − Δ
≈ + − + = + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− Δ − Δ⎣ ⎦ ⎣ ⎦⎝ ⎠

  (5.19) 
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 2
0 0 0

(cos ) (cos )1 1( ) 1 1 1
2 (cos ) 4 (cos )oc m

P P
k k k k k K

P P
ν ν

ν ν− −

⎛ ⎞⎡ ⎤ ⎡ ⎤Δ Δ
≈ + − − = + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Δ Δ⎣ ⎦ ⎣ ⎦⎝ ⎠

  (5.20) 

 
2

0

0

2sin sin
( cos ) (cos ) ( cos ) (cos )

m
sc oc

k k Kk k
k p P P p P Pν ν ν ν

πν πν

− − − −

−
− ≈ =

− Δ Δ − Δ Δ
  (5.21) 

 
Eqs. (5.19)-(5.21) have basically the same form as those originally deduced in [28]. By using the 
expansion (1+x)-1≈1-x we can approximate open- and short-circuit SAW velocities as 
 

 2
0

( cos )11 1
4 ( cos )sc

P
v v K

P
ν

ν−

⎛ ⎞⎡ ⎤− Δ
≈ − +⎜ ⎟⎢ ⎥⎜ ⎟− Δ⎣ ⎦⎝ ⎠

     (5.22) 

and  

 2
0

(cos )11 1 .
4 (cos )oc

P
v v K

P
ν

ν−

⎛ ⎞⎡ ⎤Δ
≈ − −⎜ ⎟⎢ ⎥⎜ ⎟Δ⎣ ⎦⎝ ⎠

     (5.23) 

 
These equations give the closed-form solutions for the open- and short-circuit SAW velocities 
perturbation due to electrical loading, with the mass-loading neglected. 

5.4.2. Reflection Coefficient 
 
 In the weak-coupling approximation [5, 29, 30], the reflection coefficients of the strip in the 
short- and open-circuit gratings are given by 
 

 2
2 2

( cos )
(cos ) (cos )

2 ( cos )sc
P

r j K P P
P
ν

ν ν
ν

π ν −
−

⎛ ⎞− Δ
= − Δ + Δ⎜ ⎟− Δ⎝ ⎠

   (5.24) 

 2
2 2

(cos )
(cos ) (cos )

2 (cos )oc
P

r j K P P
P
ν

ν ν
ν

π ν −
−

⎛ ⎞Δ
= − Δ − Δ⎜ ⎟Δ⎝ ⎠

    (5.25) 

 
It is assumed in Eqs. (5.24), (5.25) that the reflection center is placed in the strip center. In this case the 
reflection coefficient is imaginary and proportional to the piezoelectric coupling factor K2 and the 
normalized frequency ν. It has been shown in Chapter 1 that for a lossless two-port network the 
reflection and transmission coefficients r and t are interrelated as 
 

 
2 2

* *

| | | | 1
.

0
r t
rt tr

⎧ + =
⎨

+ =⎩
       (5.26) 

 
It follows from the second Eq. (5.26) that  
 

 / | / | ,r t j r t= ±        (5.27) 
 
i.e. the coefficients r and t are in phase quadrature [5]. Therefore, the transmission coefficient t=t* is 
real when referenced to the strip center. Apart from a phase ambiguity of π, the transmission coefficient 
t can be deduced from the reflection coefficient r as 21 | |t r= ± − . 
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5.4.3. Dispersion Relation for Stopband Propagation 
 

We consider an array of the identical electrodes of width a and period (pitch) p. All the electrodes 
are either short-circuit or open-circuit ones. In general case, we can find a propagation constant so far 
unknown by applying the following approach based on the scattering matrix of the elemental cell (Fig. 
5.2). 

p

a

a1

b1

a2

b2

……

 
 

Fig. 5.2. Elemental cell of the periodic grating 
 

As all the elemental cells are identical, all electrodes scatter surface waves in the same manner. 
We can consider one particular electrode in an array characterized by its reflection and transmission 
coefficients r and t which are different for the short- and open-circuit cases.  

At some frequency ω, it is assumed that the disturbance in the gaps between the electrodes 
includes terms of the form exp(±jk0x) representing propagating waves where k0 is the free-surface 
wave-number. We denote the right-propagating waves by ai and the left-propagating wave by bi, i=1,2 
where the subscript 1 is attributed to the waves on the left side and the subscript 2 to the waves on the 
right side. The reference planes are placed at the points distant half-period p/2 from the electrode 
center. The wave amplitudes are linearly related, so that the waves leaving the electrode can be written 
in terms of the incident waves using the scattering matrix as 

 

 1 11 12 1

2 21 22 2

b s s a
a s s b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (5.28) 

 
where 0

11 22
jk ps s re−= = and 0

12 21
jk ps s te−= = . If the electrode did not perturb the wave we would have 

r=0 and 0jk pt e−=  (quasi-static approximation). By applying Eq. (1.31) from Chapter 1 we can convert 
the scattering matrix S =[sik], i,k=1,2 to the transmission matrix T=[tik], i,k=1,2 relating the waves on 
the left and right side of the electrode 
 

 1 11 12 2

1 21 22 2

a t t a
b t t b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (5.29) 

 
Please note that our definition of the transmission matrix T differs from the definition given in [5] as it 
relates the waves at the left to the waves at the right. Such a definition is more convenient for 
cascading. 

The matrix T has the following structure  
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22

21 2111 12

21 22 11 11 22
12 *

21 21

1 1

1

s r
s st t t

t t rs s s
s

ts s

τ

τ

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

T      (5.30) 

 
where 0jk pteτ −=  and the properties (5.26) were used. In an infinite lossless array propagating waves at 
the left and right sides of the electrode should be the same apart from the phase shift 
 

 1 2 2 2
*

1 2 2 2

1/ /
/ 1/

j p

j p

a a e a r t b
b b e r t a b

γ

γ

τ
τ

⎧ = = −
⎨

= = +⎩
     (5.31) 

 
Eq. (5.31) can be rewritten in the equivalent matrix form as 
 

 2
*

2

1/ /
/ 1/

j p

j p

ae r t
br t e

γ

γ

τ
τ

⎡ ⎤− − ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

0      (5.32) 

 
where γ is the propagation constant. By equating the determinant of the system (5.32) to zero and using 
(5.26), we obtain a dispersion relation for γ 

 *

1 1 12cos 2Re .pγ
τ ττ

= + =       (5.33) 

 
If the transmission coefficient t is real, the Eq. (5.33) takes the form 
 

 0cos
cos

| |
k p

p
t

γ =        (5.34) 

The solution of Eq. (5.34) is given by  

 cosarccos 2 , 0,1,...
| |

kpp n n
t

γ π= ± + =      (5.35) 

Outside the stopband |t|≈1 and the solution of Eq. (5.34) gives the real value γ≈k0. However, in the 
stop-band |t|<1 and the right side of Eq. (5.34) is greater than 1 (or less than –1) when k0p is close to a 
multiple of π. In this case, γ is the complex-valued function γ=±β+jα , Im{α}<0 giving a stop-band 
propagating where β is the wave number and α is the attenuation factor. Within any interval of width 
2π/p there exist two solutions for γ corresponding to counter-propagating waves as might be anticipated 
from physical considerations. For any particular solution in the stop-band, it involves two waves 
propagating in both directions, even though the overall wave motion is in one direction. 
 Thus, we derived all the required relations to characterize symmetric (open-circuit) and 
antisymmetric (short-circuit) modes, in particular: 

1) open- and short-circuit wavenumbers koc and ksc for wave propagation outside the stop-band; 
2) dispersion equations for propagation constants γoc and γsc in the stop-band; 
3) scattering coefficients roc,sc and toc,sc (the reflection and transmission coefficients) of one strip 

in the perioic grating. 
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5.5. Multistrip Coupler Models 

5.5.1. Reflective Array Model (RAM) 
 
 Reflective array model is based on the closed-form cascading of the identical elemental reflective 
cells for an array of N electrodes [5, Appendix E], with the transmission matrix of the array given by 
TN where T is the transmission matrix (5.30) of one elemental cell. As was shown in [32, 33], the N-th 
power of the transmission matrix T is given by the following closed –form equation 
 

 1( ) ( )N
N N NP Pθ θ−= = −T T T E      (5.36) 

 
where PN(θ) is Chebyshev polynomial of the second kind, E is the unit (identity) matrix, θ=2cosγp is 
the trace of the matrix T where γ is the propagation constant found from the dispersion equation (5.33). 
The Chebyshev polynomials can be found in the closed-form from the recurrent relation [32] 
 

 sin( ) ,
sinN

NP pϕθ ϕ γ
ϕ

= = .      (5.37) 

Therefore Eq. (5.36) takes the form 

 sin( 1)sin
sin sinN

NN ϕϕ
ϕ ϕ

−
= −T T E      (5.38) 

or after substitution of Eq. (5.30) we obtain 
 

 

*

1 sin sin( 1) sin
sin sin sin

sin 1 sin sin( 1)
sin sin sin

N

N N r N
t

r N N N
t

ϕ ϕ ϕ
τ ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕτ

−⎡ ⎤− −⎢ ⎥
⎢ ⎥=

−⎢ ⎥−⎢ ⎥⎣ ⎦

T     (5.39) 

 
The transmission matrix TN can be converted to the scattering matrix SN using Eq. (1.32) applied to the 
passive grating (V=0) 
 

 

sin sin
sin sin( 1) sin ( 1)sin

sin sin
sin ( 1)sin sin sin( 1)

N

r N
t N N N N

r N
N N t N N

τ ϕ τ ϕ
ϕ τ ϕ ϕ τ ϕ
τ ϕ τ ϕ

ϕ τ ϕ ϕ τ ϕ

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

S .   (5.40) 

 
The closed-form scattering matrix SN can be used for the symmetric/antisymmetric normal mode 
description, with the pertinent values of the reflection coefficients roc,sc and the propagation constants 
γoc,sc substituted into (5.40). 

5.5.2. Coupling-of-Modes (COM) Model 

5.5.2.1. COM-Equations and Solutions 
 

The coupling-of-modes (COM) approximation is a closed-form technique to model systems with 
spatially or time varying properties [34] which has been successfully applied to modeling SAW 
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gratings and transducers [35, 36].  
Consider two counter-propagating waves a(x) and b(x) which can be written in the form 
 

 
K
2

K
2

-j x

j x

a(x)= A(x)e

b(x)= B(x)e+
        (5.41) 

 
where A(x) and B(x) are slowly varying complex amplitudes, K=2π/p is the grating wavenumber and p 
is the pitch of a uniform SAW grating. In the presence of a SAW reflective array, the counter 
propagating waves get coupled with each other near the Bragg frequency. As the result, the free-surface 
propagation constant ko is perturbated by Δk. 

COM equations for the reflective array take the form [35, 36] 
 

 *

A j j Ad
B j j Bdx

δ κ
κ δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (5.42) 

 
where δ=ko+Δk-K/2 is the detuning parameter, κ is the coupling factor which characterizes reflectivity 
per electrode. These two COM-parameters are to be determined (or known) a priori. In general case, 
the COM parameters depend on frequency, substrate and electrode material as well as on the grating 
geometry (metallization ratio, pitch, metal film height). 

Assumed for simplicity that κ=κ* is the real function, the closed-form solution of the system of 
homogeneous differential equations (5.42) is given by 

 

 1 2

1 2

j x j x

j x j x

A (x)=   h e Ph e
B (x)=   Ph e h e

γ γ

γ γ

− +

− +

+

+
       (5.43) 

 
where the following notation was introduced 
 

 2 2 -= -  ,  P = =  
+
κ δ γγ δ κ δ γ κ

      (5.44) 

The coefficients h1 and h2 are to be determined from the boundary conditions imposed on the incident 
and reflected waves at the beginning and the end of the finite length grating consisting of N electrodes. 
If there is the only incident wave of the unit amplitude at the left port, the boundary conditions are as 
follows 

 
(0) 1

( ) 0
a

b Np
=⎧

⎨ =⎩
        (5.45) 

 
Substitution of Eqs. (5.41), (5.43) into the system of boundary conditions (5.45) gives 
 

 ,
-2jN

1 2-2jN -2jN2 2

1 Pe=            = -       h h
1 - 1 -e eP P

ϕ

ϕ ϕ
     (5.46) 

 
where n=γp is the phase shift per period of the grating. By substituting Eqs. (5.46) into (5.43) for x=0 
and x=Np we obtain the scattering matrix of the grating 
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R T
T R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S         (5.47) 

 
where the reflection coefficient of the grating 
 

 
2

2 2

1
1

jN

jN

b(0) B(0) eR =  =  = P 
a(0) A(0) P e

ϕ

ϕ

−

−

−
−

      (5.48) 

and the transmission coefficient  
 

 
2

2 2

1
1

-jN
jN

a (Np) A (Np) PT =  =  = ea (0) A (0) P e
ϕ

γ−

−
−

     (5.49) 

5.5.2.2. Determination of COM Parameters 
 

According to Eq. (5.42) there are two principal COM-parameters: wavenumber perturbation 
Δk=k-k0 and the coupling factor κ. For a particular substrate material and grating geometry, the values 
of these parameters should be determined a priori either numerically or analytically. It is shown in [36] 
that the fractional wavenumber perturbation Δk/k0 can be approximated as follows 

 

 0
0 0 0

0

// / , / 1
1 /

v vk k v v v v
v v

Δ
Δ = − ≈ −Δ Δ <<

+ Δ
     (5.50) 

where Δv=v-v0 is the velocity change in the grating. According to Eq. (5.50) the fractional wavenumber 
perturbation Δk/k0 is approximately equal to the fractional velocity change Δv/v0 taken with the minus 
sign. For strongly piezoelectric materials that is the very case for using MSC, we can apply the closed-
form Eqs. (5.19), (5.20) or (5.22), (5.23), to a sufficient accuracy. A simple linear approximation can 
be also used for SAW velocity approximation 

 2
0 0

1(1 ) (1 )
2mv v v v Kη η η≈ − + = −       (5.51) 

and hence 

 2

0

1
2

v K
v

ηΔ
≈ −         (5.52) 

 
where v0, vm are the free- and metallized surface SAW velocities, respectively, η is the metallization 
ratio, K2 is the piezoelectric coupling factor. 

To understand a physical meaning of the coupling coefficient κ, we consider one elemental cell 
(N=1) of the periodic grating at synchronism (δ=0). In this case COM-variables (5.44) take the values 

 
 , /j P jγ κ κ γ= = = −       (5.53) 

 
After substituting (5.53) into COM-equation (5.48), we obtain for N=1 
 

 
2

2

1 tan tan tanh , | | 1
1

j p

j p

eR j p j p j p j p p
e

γ

γ γ κ κ κ κ
−

−

−
= − = = = ≈

+
   (5.54) 

 
On the other hand, according to Eq. (5.28)the reflection coefficient at the synchronous frequency takes 
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the value 
 jR re rπ−= = −        (5.55) 

 
Comparing Eqs. (5.54) and (5.55) we obtain the relationship 
 

 r j pκ= − .        (5.56) 
 
Thus, the coupling factor κ=jr/p is the strip reflectivity per unit length of the period. Eq. (5.56) agrees 
with that deduced in [29]. 

The COM-parameters can be also deduced from the dispersion curve of the grating which must 
be calculated or determined experimentally in the proximity of the resonant frequency [38] (Fig. 5.3).  

 

Im{k/K}
Re{k/K}

Normalized wavenumber k/K
1

ω1

ω0

ω2

 
Fig. 5.3. Dispersion curve of the periodic grating 

 
The COM parameters Δk and κ can be deduced from two eigen-frequencies ω1 and ω2 which are the 
stopband frequencies of a periodic short-circuit or open-circuit grating. These frequencies ω1 and ω2 
degenerate to one single frequency ω0 for the free surface. From a set of these three frequencies ω0, ω1, 
and ω2 the wavenumber perturbation parameter Δk can be determined as 
 

 1 2 0 1 2

0 0 0

2
1

2 2
k

k
ω ω ω ω ω

ω ω
+ − +Δ

= − = −      (5.57) 

 
The reflection coefficient per one finger κ is proportional to the stopband width [5] 
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 2 1

0

| | p =
ω ω

κ π
ω
−        (5.58) 

If all COM parameters are determined, few experiments are required to tune the model if necessary. 

5.5.3. Field Approach 
 
 The basic idea of the field approach to modeling finite length gratings and MSC is the following 
[28].  
 An arbitrary excitation of a finite array can be described in terms of the normal modes. The 
problem is then to match the normal-mode fields in the array to the fields of the incoming and 
outcoming (reflected) waves on the free surface outside the array. This can be done approximately at 
the edges of the array without including volume waves and evanescent modes. We shall use one-
dimensional approximation that gives good agreement with experimental data, provided for the 
transversal length of the electrode (acoustic aperture) being much wider than period p, i.e. W/p>>1. 
 As is known [26, 27], the dominating part of the acoustic power is carried by the fundamental and 
the first backward harmonics. We can neglect the higher harmonics assuming that they are matched 
into evanescent modes. Therefore, an acoustic field pattern in a normal-mode excitation of a finite 
length grating can be written as 
 

 ( ) ( )
0 1 0 1( ) jkx j K k x jkx j K k xx a e a e b e b eφ − − − −

− −= + + +     (5.59) 
 
where K=2π/p is the grating wavenumber, a0 and a-1 are phenomenological wave amplitudes for the 
fundamental and the first negative spatial harmonics of a forward-running wave, and b0 and b-1 are 
defined similarly for a backward-running wave. If a0, b0 and a-1, b-1 are defined as the square root of the 
total power carried by the fundamental and first negative spatial harmonics, respectively, we obtain the 
following ratio [28, 37] 

 1 1 1

0 0 1

( )
a b k k

k
a b K k k

ρ ρ − − −
= = = =

− −
      (5.60) 

 
where ρ is the coupling factor of the fundamental and the first negative spatial harmonics, k is the 
fundamental wave number and the wavenumber k1 is defined as 
 

 ( )2
1 0

11 1 cos
4

k k K⎡ ⎤= + − Δ⎢ ⎥⎣ ⎦
       (5.61) 

 
Since k is close to k1, the ratio (5.60) is close to zero except for the case when k is close to K/2 that 
corresponds to the stop-band propagation. The wavenumber k is supposed to be found from the 
dispersion equation for the open- or short-circuit grating. 

Now, the acoustic field (5.59) must be matched to the incoming and reflected waves at the ends 
of the array. The boundary conditions at the ends of the array are established by requiring that the 
incoming wave shall match the waves in the array with phase velocity in the same direction and the 
waves in the array with phase velocity in the opposite direction shall match the reflected waves. 

If there is the only incident wave of the unit amplitude at the left port, the boundary conditions at 
the edges of the array are as follows 
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 0 0

0 0

1
0N N

a b
a e b e

ρ
ρ −

+ =⎧
⎨ + =⎩

       (5.62) 

 
where je e ϕ= , kpϕ = is the phase lag per period. From the solution of Eq. (5.62) we can find the 
coefficients 

 
2

2
0 0 02 2 2 2

1 ,
1 1

N
N

N N

ea b a e
e e

ρρ
ρ ρ

−
−

− −= = − = −
− −

    (5.63) 

 
On the other hand, from Eq. (5.59) the reflected waves at the left and right ports are 
 

 
2

1 0 0 0
2

2 0 0 0

(1 )
(1 )

N

N N N

B a b e a
B a e b e e a

ρ ρ
ρ ρ

−

− −

⎧ = + = −
⎨

= + = −⎩
     (5.64) 

 
For the unit amplitude of the incident wave, the amplitudes of the reflected waves B1 and B2 define the 
reflection and transmission coefficients R and T, respectively. After substitution of a0 from Eq. (5.63) 
into (5.64) we find 
 

 
2

2 2

1
1

jN

jN

eR
e

ϕ

ϕρ
ρ

−

−

−
=

−
       (5.65) 

 
2

2 2

1
1

jN
jNT e

e
ϕ

ϕ

ρ
ρ

−
−

−
=

−
       (5.66) 

 
Eqs. (5.65) and (5.66) can be used for modeling the normal modes in the open- and short-circuit 
gratings, provided for the wavenumbers koc and ksc substituted and the harmonic coupling factor ρoc,sc is 
defined by Eq. (5.60) The wavenumbers ksc and koc are determined analytically or found from the 
dispersion relations. Given the reflection coefficients roc and rsc, the dispersion equation (5.34) can be 
used to find the wavenumbers ksc and koc. Since they are complex-valued function in the stop-band, the 
harmonic coupling factor ρ is real outside the passband and imaginary in the stop-band. 

Another form of the open and short-circuit dispersion relations is based on the expansion to space 
harmonics [28], with the following approximation applied to the wavenumber k so far unknown 

 
 , ,( ) ,sc oc sc ock k k kρ= + Δ       (5.67) 

 
where ksc, oc are given by Eqs. (5.19) and (5.20), ρ(k) is given by Eq. (5.60), and  
 

 2 1
0

( cos )1 cos
4 ( cos )sc

P
k K k

P
ν

ν

−

−

⎛ ⎞− Δ
Δ = Δ +⎜ ⎟− Δ⎝ ⎠

     (5.68) 

 2 1
0

(cos )1 cos
4 (cos )oc

P
k K k

P
ν

ν

−

−

⎛ ⎞Δ
Δ = Δ −⎜ ⎟Δ⎝ ⎠

     (5.69) 

 
Eqs. (5.67) are higher order approximations of the wavenumbers for the open- and short-circuit 
gratings taking into account the first negative spatial harmonic, with the last terms representing the 
coupling to this harmonic. It is worthy to note that Eqs. (5.19) and (5.20) accounts for only the 
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fundamental harmonic and follow from Eqs. (5.67) as the particular case ρ=0. 
Eqs. (5.67) are transcendental with respect to the wavenumber k and the solutions should be 

found numerically. However, we can find the closed-form solution by replacing the variable k in the 
slowly varying functions ksc,oc and Δksc,oc by k0. In this case Eq. (5.67) can be converted to the following 
quadratic equation with respect to k 

 
 2

1 , , , 1 1 ,( ) ( ) 0sc oc sc oc sc oc sc ock K k k k k k K k k k− − + − Δ + − − Δ =   (5.70) 
 
The physical solution must be selected of two roots to satisfy the conditions Re{k}<k0 and Im{k}<0. 
Small iteration is required if one wishes to refine the solution. To this end, the found value of the 
wavenumber k can be substituted into the functions ksc,oc and Δksc,oc and the refined value of k is 
recalculated using Eq. (5.70). 

By substituting the found wavenumbers k and the harmonic coupling factor ρ(k) into Eqs. (5.65) 
and (5.66) we find the scattering matrices of the open- and short-circuit gratings required for the two-
mode MSC analysis using Eqs. (5.12). 

5.5.4. Quasi-Static Approximation 
 

In the quasi-static approximation [5], the perturbation of a propagating surface acoustic wave by 
a shorted electrode is ignored (r=0, |t|=1). This model can be treated as a particular (non-reflective) 
case of the more accurate reflective models discussed previously. It is clear that the quasi-static 
approximation fails to predict a stop-band propagation. However, outside the stop-band this 
approximation gives accurate closed-form results in many practical cases. In the standard applications, 
MSC operates outside the stop-band, so that useful properties and relations can be deduced in the 
quasi-static approximation. 

The shorted electrodes perturb SAW velocity due to the mass-electrical loading effect. For 
strongly piezoelectric materials, such as lithium niobate, mechanical loading is not significant, 
provided the metal film used for depositing the metal strips has elastic properties similar to the 
substrate (this condition is usually met by using the aluminum film). Electrical loading perturbation 
may cause a considerable change in the SAW velocity. This effect also cannot be accurately modeled 
in the quasi-static approximation. However, despite the quasi-static approximation is based on the 
assumption that the wavenumber in the short-circuit grating ksc≈k0 is essentially the same as the free-
surface wavenumber k0 it predicts to a sufficient accuracy the wavenumber difference for the short- and 
open-circuit gratings [5, Eq. (5.23)]  

 

 2 2 2 20 2sin (cos )
( cos ) (cos )sc oc n

k
k k K P

p P Pν ν

πν

− −

− = Δ
− Δ Δ

    (5.71) 

 
or taking into account ksc+ koc ≈2k0 

 
2

2sin (cos )
( cos ) (cos )sc oc n

Kk k P
p P Pν ν

πν

− −

− ≈ Δ
− Δ Δ

    (5.72) 

 
where Pn(cosΔ) is the Legendre polynomial, n is the space harmonic number. It is surprising that the 
approximate Eq. (5.71) gives the same result as the accurate formula (5.18). 

We suppose for the moment that short- and open-circuit wavenumbers values ksc and koc are 
known. In the quasi-static approximation, the scattering matrices of the short- open-circuit gratings are 
given by 
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e

e

−

−

⎡ ⎤
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⎢ ⎥⎣ ⎦

S        (5.73) 

where for the finite length grating we can neglect end effects if the number N of the strips is 
sufficiently large. The input and output reference planes are located at the beginning of the first 
elemental cell and at the end of the last elemental cell, respectively. 

After substitution of the normal mode wavenumbers ks=koc and ka=ksc and normal mode 
scattering coefficients (5.73) into Eqs. (5.12) we obtain the following MSC scattering coefficients 
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12 11 11 11 11
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π
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   (5.74) 

where 
2

sc ock k
k

+
=  can be treated as the MSC wavenumber, Δk= ksc- koc, N is the number of the MSC 

strips, N0 is the optimum number of the MSC strips to completely transfer the surface wave power from 
one track to the other. The optimum number can be found from the condition of the full track coupling 
by equating the MSC scattering coefficient s13 to unity 
 

 0 2

( cos ) (cos )
( ) sinsc oc

P P
N

kp k k p K
ν νπ π π

πν
− −− Δ Δ

= = ≈
Δ −

    (5.75) 

 
where Eq. (5.72) has been used for approximation of the wavenumber difference Δk. Therefore, the 
optimum number of the strips is inversely proportional to the piezoelectric coupling factor K2. It also 
depends on the metallization ratio η=a/p as well as on the fractional frequency ν= f0/2fπ where f0 is the 
MSC working frequency and fπ=v/2p is the MSC synchronous frequency. By using the identity (5.16) 
Eq. (5.75) can be transformed to the form  
 

 
1

0 2

(cos ) ( cos )2
(cos ) ( cos )

P P
N

P PK
ν ν

ν νν

−

− −

⎛ ⎞Δ − Δ
= +⎜ ⎟Δ − Δ⎝ ⎠

     (5.76) 

 
Since the term in the brackets is roughly equal to unity in the range of the practical values ν=0.35-0.45, 
as a rule of thumb we can use the following simple formula to estimate the required number of the 
MSC strips  

 0 2

2N
K ν

≈         (5.77) 

 
For example, for the 128°YX lithium niobate substrate (K2=5.7%), η=0.5 and ν=0.4 (fπ=1.25 f0) we 
obtain from Eq. (5.75) N0=80 while the approximate Eq. (5.77) gives the estimated value N0=88. 

Another important property following from the normal mode expansion in the quasi-static 
approximation is that according to Eq. (5.74) acoustic waves in two adjacent tracks are in the phase-
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quadrature. An interesting particular case follows for a MSC with half the optimum number of the 
strips N0/2. In this case, according to Eqs. (5.74) |s13|=|s14|=1/ 2 , i.e. the input acoustic power is 
equally divided between the tracks (3-dB multistrip coupler). 
 Thus, the quasi-static approximation gives simple closed-form equations for MSC modeling. It 
provides a sufficient accuracy for frequencies outside the MSC stop-band that is usually the practical 
case. Therefore, it can be successfully applied to synthesis and analysis of the multistrip couplers with 
complete or partial acoustic power transfer. 



 6-1

 
6. SAW FILTER MODELING 

6.1. In-Line SAW Filter (in the Quasi-Static Approximation) 
 

We consider a SAW filter composed of two in-line SAW interdigital transducers. One of SAW 
transducers is supposed to be uniform (unapodized), while another may be uniform or aperture-
weighted (apodized). The port separation between input and output transducers is equal to ΔL. Input 
and output electric ports of the transducers are connected to the source (generator) and load with the 
resistance RG and RL, respectively (Fig.6.1). 

Fig. 6.1. SAW filter schematics with the external circuitry 
 
SAW transducers are modeled as the reciprocal and lossless three-port networks with one electric 

and two acoustic ports (Fig. 6.1) where Vk is the voltage applied to the transducer bus-bars, Ik is the 
transducer terminal current, k=1,2. We assume that the i-th transducer is defined by its mixed scattering 
matrix Mi which in the quasi-static approximation takes the form (when referenced to the transducer 
center) 

*

*

0 1
1 0
2 2

i

i i

i i i

m
m

m m Y

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

M                                                              (6.1) 

 
where mi is the acoustoelectric conversion function and Yi is the admittance of the i-th transducer. 

Supposed for an acoustic absorber to be deposited behind the transducers, we can neglect SAW 
reflections at the substrate edges. In this case, there are no incident acoustic waves at the external 
acoustic ports of the input/output SAW transducers. These ports are decoupled and can be excluded 
from the further consideration. The internal acoustic ports are acoustically coupled, so that a surface 
acoustic wave of the amplitude a launched to the right by the input SAW transducer is detected by the 
output transducer with a phase lag j Le β− Δ  where β=ω/v is SAW wave number and v is SAW velocity.  

Electrically, a SAW filter shown in Fig. 6.1 is a two-port network that can be conveniently 
described by the admittance matrix (Y-matrix) as follows 

 
 I = YV         (6.2) 

or  

I1

∼

a

Output IDT

SAW filter

Input IDT

RG

RLE

I2

V1 V2

ΔL

b
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 1 11 12 1

2 21 22 2

I Y Y V
I Y Y V
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (6.3) 

 
where I=[I1 I2]T and V=[V1 V2] are vectors of the currents and voltages, Ii and Vi, i=1,2 are currents and 
voltages at the input and output electric ports, respectively, and the Y-matrix elements Yik, i,k=1,2 are 
to be determined. Again, by reciprocity the matrix Y is symmetric (Yik=Yki) and by causality principle 
for currents and voltages the real and imaginary part of each element Yik must be interrelated via the 
Hilbert transformation. Once Y-matrix of a SAW filter is determined, the standard electric network 
theory can be applied to further SAW filter analysis. 

When the central frequency of a SAW transducer is far away from the synchronous frequency it 
may be presumed to a good accuracy that a short-circuit SAW transducer is reflectionless that is a basic 
assumption of the quasi-static approximation. Supposed for the mixed scattering matrices of SAW 
transducers to be known a priori, the closed-form elements Yik can be deduced from the following 
physical considerations [39]. It follows from Eq. (6.3) that  

 

 
0

( )
( ) , , 1, 2

i

i
ik

k V

I
Y i k

V
ω

ω
=

= =      (6.4) 

 
where Ii(ω) is the short-circuit current (Vi=0) induced in the i-th transducer when the k-th transducer is 
activated by applying the voltage Vk to the transducer bus-bars. Assumed for the short-circuit SAW 
transducer to be reflectionless (“transparent”) with respect to the incident waves, there are no reflected 
waves in a SAW filter with one of the transducers activated and another grounded. The excited wave 
with amplitude a remains the only wave to propagate and induce short-circuit current Ii(ω) when 
passing past a grounded transducer. On the other hand, when looking at the electric port, the activated 
SAW transducer behaves as if it were an isolated one as there are no reflected waves to be detected by 
this transducer. By other words, in the quasi-static approximation a SAW transducer cannot “see” 
another grounded SAW transducer. It means that the self-admittance Yii(ω) is simply given by the 
transducer admittance Yi(ω), i.e. 

 
0

( )
( ) ( ), 1, 2

k

i
ii iV

I
Y Y i

Vi
ω

ω ω
=

= = =     (6.5) 

 
where Yi(ω) is the admittance of the i-th SAW transducer corresponding to the m33-element in its mixed 
scattering matrix Mi. 
 Now, we can determine the mutual (intertransducer) admittance Yik(ω), i≠k as follows. For the 
input transducer with the applied voltage V1≠0 and the output transducer grounded V2=0, the acoustic 
wave amplitude a launched in the right direction by the input transducer is 

 *
1 1a m V= − .        (6.6) 

After traveling the distance L=L1/2+ΔL+L2/2 separating the transducer centers where Li is the acoustical 
length of the i-th transducer, this wave induces a short-circuit current in the grounded output SAW 
transducer 

 *
2 2 1 2 12 2j L j LI m ae m m e Vβ β− −= − =       (6.7) 

 
Thus, the intertransducer admittance Y21 is given by the following equation 

 *2
21 1 2

21

2
0

j LIY m m e
VV

β−= =
=

      (6.8) 
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Following the same considerations for the input transducer grounded (V1=0) and the output transducer 
with applied voltage V2≠0 that excites the acoustic wave with amplitude b in the left direction, we 
obtain the same Eq. (6.8) but for the intertransducer admittance Y12= Y21 as might be anticipated by 
reciprocity. According to Eq. (6.8) the intertransducer admittance Yik(ω) ) is given by the product of the 
complex-conjugated input acoustoelectric conversion function with the output acoustoelectric 
conversion function.  
  Thus, the SAW filter admittance matrix is determined in the quasi-static approximation, with its 
elements 

 *
1 2

,
, , 1,2

2 ,
i

ik j L

Y i k
Y i k

m m e i kβ−

=⎧
= =⎨ ≠⎩

.     (6.9) 

  
Given the admittance matrix Y of a SAW filter, we can apply the standard network techniques to SAW 
filter analysis. As an illustration, we find the transfer function of a SAW filter in Fig. 6.1 
 

 2 ( )
( )

V
F

E
ω

ω =         (6.10) 

 
To this aid, we specify the electrical terminal conditions at the generator and load ends as 
 

 1 1

2 2

( ) G

L

I E V Y
I V Y
= −⎧

⎨ = −⎩
        (6.11) 

 
where YG=1/RG and YL=1/RL. After substitution of Eqs. (6.11) into (6.3) we obtain the following system 
of equations with respect to the unknown voltages V1 and V2: 
 

 11 1 12 2

21 1 22 2

( )
( ) 0

G G

L

Y Y V Y V EY
Y V Y Y V
+ + =⎧

⎨ + + =⎩
      (6.12) 

 
Solution of the system (6.12) gives the following known expression for the SAW filter transfer function 
 

 21

12 21 11 22

( )
( )

( ) ( ) ( ( ) )( ( ) )
G

G L

Y Y
F

Y Y Y Y Y Y
ω

ω
ω ω ω ω

=
− + +

    (6.13) 

 
It is worthy noting that the two-port admittance matrix Y can be converted to the more familiar two-
port scattering matrix S by applying Eq. (1.3) to the electric ports that results in 
 

 -1 -1S = (E - Y)(E + Y) = (E + Y) (E - Y)      (6.14) 

where 
1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E  is the identity matrix and oZ=Y Y is the normalized dimensionlessY-matrix, with 

Z0=1/Y0 being characteristic impedance assumed to be the same at the generator and load ends, for 
simplicity. The elements Sik, i,k=1,2 (scattering coefficients or S-parameters) of the scattering matrix S 
of a SAW filter can be measured experimentally using a standard vector network analyzer. Eq. (6.14) 
may be converted to a simpler form that is more convenient for computations, with less matrix 
operations involved  
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 ( )-1 -1 -1S = (E + Y) (E - Y) = (E + Y) 2E - (E + Y) = 2(E + Y) - E    (6.15) 

or in the explicit form 
 

 0 11 0 22 12 21 12 011 12

21 0 0 11 0 22 12 2121 22

( )( ) 21
2 ( )( )

Y Y Y Y Y Y Y YS S
Y Y Y Y Y Y Y YS S Y

− + + −⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ − + − +Δ⎣ ⎦ ⎣ ⎦

  (6.16) 

 
where 0 11 0 22 12 21( )( )Y Y Y Y Y Y YΔ = + + − . From the comparison of the S-parameter S21 with Eq. (6.13) it 

follows that S21=2F(ω), i.e. the SAW filter transfer function F(ω) is given by the function S21. 

6.2. Dual-Track SAW Filter with a Multistrip Coupler 
 
 In a dual-track SAW filter the input and output SAW transducers are placed in two different 
acoustic tracks (channels) coupled trough a multistrip coupler [21-24] (Fig. 6.2). A surface acoustic 
wave launched by the input transducer is redirected (partially or completely) into another track by the 
MSC spanning both acoustic tracks and then detected by the output IDT. Wave propagating in two 
adjacent tracks and introducing MSC between SAW transducers makes the dual-track SAW filter 
analysis more complicated if compared to the conventional in-line SAW filters due to the increased 
number of the acoustic ports and number of the waves propagating and interacting in the system. The 
problem is to cascade three SAW elements: input SAW transducer in the first track, MSC coupler 
spanning both tracks and the output SAW transducer in the second track.  
 

I1

∼

SAW filter

Input IDT

RG

E V1

Output IDT RL

I2

V2

ΔL1
ΔL2

MSC

a1

b1

a2

b2

A1

B1

A2

B2

1 3

42

 
Fig. 6.2. Dual-track SAW filter with a multistrip coupler 

 
Since the MSC ports 2 and 3 are supposed to be acoustically matched with the substrate medium (there 
are no incident waves at these ports) we can exclude these ports from the further consideration and use 
the reduced MSC scattering matrix SMSC of the form 
 

 1 111 14

2 214 11

MSC MSC

MSC MSC

b as s
a bs s

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
      (6.17) 
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where s11

MSC is the reflection coefficient of the MSC and s14
MSC is the transmission ratio from the port 1 

to port 4. The scattering matrix SMSC=[sik
MSC], i,k=1,2 (6.17) can be converted to the transmission 

matrix TMSC=[tik
MSC], i,k=1,2 relating the waves at the port 1 to the waves at the port 4  

 

 

11

14 14
2

11 11
14

14 14

1

( )

MSC

MSC MSC

MSC MSC MSC
MSC

MSC MSC

s
s s

s ss
s s

⎡ ⎤
−⎢ ⎥

⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

T       (6.18) 

 
 The input and output SAW transducers are specified by their mixed scattering matrices 
 

 

1,2 1,2 1,2
11 12 13
1,2 1,2 1,2

1,2 21 22 23
1,2 1,2 1,2
31 32 33

m m m
m m m
m m m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M        (6.19) 

where the indexes “1” and “2” are attributed to the input and output SAW transducers, respectively. For 
simplicity, we assume that the gaps ΔL1,2 separating SAW transducers from MSC have been included 
implicitly in Eqs. (6.19) by the reference plane transformation 
 

 1 1 121 1 1 1 1 1
21 21 22 22 23 23, , ,j L j L j Lm m e m m e m m eβ β β− Δ − Δ − Δ→ → →    (6.20) 

 2 2 222 2 2 2 2 2
11 11 12 12 13 13, , .j L j L j Lm m e m m e m m eβ β β− Δ − Δ − Δ→ → →     (6.21) 

 
The mixed scattering matrices M1,2=[mik

1,2], i,k=1,2,3 can be converted to the transmission matrices 
T1,2 =[tik

1,2], i,k=1,2,3 , with the elements tik
1,2 of the transmission matrices given by Eq. (1.31). 

 For cascading, we compose the augmented transmission matrices of the size 4 by 4, with the 
artificial electric variables having the unit transmission formally attributed to the relevant ports: 
 
input transducer 

 

1 1 1
1 111 12 13

1 1 1
1 121 22 23

1 1 1
1 131 32 33

2 2

0
0
0

0 0 0 1

A at t t
B bt t t
I Vt t t
I I

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

      (6.22) 

multistrip coupler  

 

1 211 12

1 212 11

1 1

2 2

0 0
0 0

0 0 1 0
0 0 0 1

MSC MSC

MSC MSC

a at t
b bt t
V V
I I

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

      (6.23) 

output transducer 
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2 2 2
2 211 12 13

2 2 2
2 221 22 23

1 1
2 2 2

2 231 32 33

0
0

0 0 1 0
0

a At t t
b Bt t t
V V
I Vt t t

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

      (6.24) 

  
The mixed transmission matrix T of a SAW filter relates the waves A1 and B1 at the left port of a SAW 
filter and its terminal currents I1 and I2 with the waves A2 and B2 at the right port and the terminal 
voltages V1 and V2 

 

11 12 13 141 2

21 22 23 241 2

31 32 33 341 1

41 42 43 442 2

t t t tA A
t t t tB B
t t t tI V
t t t tI V

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

      (6.25) 

 
It follows from Eqs. (6.22)-(6.24) that the transmission matrix T can be found as the product of the 
augmented transmission matrices 

 1 MSC 2T = T T T% % %         (6.26) 
where 

 

2 2 21 1 1
11 12 1311 12 13 11 12
2 2 21 1 1
21 22 2321 22 23 12 11

1 1 1
31 32 33

2 2 2
31 32 33

00 0 0
00 0 0

, ,
0 0 1 00 0 0 1 0

00 0 0 1 0 0 0 1

MSC MSC

MSC MSC

t t tt t t t t
t t tt t t t t

t t t
t t t

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 MSC 2T T T% % % .  (6.27) 

 
 The final step is to determine the admittance matrix Y of a SAW filter relating the currents and 
voltages at the electric ports according to Eqs. (6.2), (6.3). To this end, we rewrite Eq. (6.25) in the 
block-matrix form 

 
1 11 12 2

1 21 22 2

A T T A
B T T B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

13

23

31 32 33

T
T

I T T T V
      (6.28) 

 
where I=[I1 I2]T and V=[V1 V2]T are vectors of terminal currents and voltages, respectively. In case of 
the isolated SAW filter (A1= B2=0), the admittance matrix Y is found from the solution of the system of 
the matrix equations (6.28) as 

 1
11T −= −33 31 13Y T T T .       (6.29) 

 
Once the SAW filter admittance matrix Y has been determined, the standard network analysis 
techniques can be applied to SAW filter analysis. It is worthy to note that the algorithm applied to 
deduce the admittance matrix of a SAW filter comprising MSC is quite general. Contrary to the 
analysis of the in-line SAW filters in this chapter, the quasi-static approximation assumptions were not 
used in deriving Eq. (6.29). 
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